IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422002116.html
   My bibliography  Save this article

Revisiting crop water stress index based on potato field experiments in Northern Germany

Author

Listed:
  • Ekinzog, Elmer Kanjo
  • Schlerf, Martin
  • Kraft, Martin
  • Werner, Florian
  • Riedel, Angela
  • Rock, Gilles
  • Mallick, Kaniska

Abstract

Different types of the Crop Water Stress Index (CWSI) have been useful for water stress monitoring and irrigation management in semi-arid regions, however little research exists on its effective application in humid regions. This study aims to assess the effectiveness of three CWSI models (CWSIe - empirical, CWSIt - theoretical, CWSIh - hybrid) for crop water stress monitoring in an experimental field for potato crops in Northern Germany. Irrigation experiments with three treatments (optimum-OP, reduced-RD and no) were conducted in the summer of 2018 and 2019. Continuous canopy temperatures (Tc) for OP and RD irrigation treatments together with meteorological measurements were used to derive CWSI from the different models. Additionally, Visible/near infrared (VNIR) and Thermal Infrared (TIR) drone images were collected on several days during the growing season to create CWSI maps. The different CWSI models were correlated with volumetric soil water content (θ) measurements for comparison and relationships were established between CWSI and θ for prediction. Results showed that CWSI accurately estimates soil water content under atmospheric conditions similar to those in semi-arid regions. The predictive performance of different CWSI models were fairly good (R2 =0.57–0.63) (situation in 2019). CWSIe and CWSIh performed better than CWSIt. CWSI-θ relations calibrated in one year effectively predicted θ in another year with errors of 1.2–2.2% absolute soil water content. CWSIh could be a promising alternative to the traditional CWSI as it combines aspects of CWSIe (empirical upper limit) and of CWSIt (theoretical lower limit) which has advantages for operational use. Finally, the drone-based CWSI and θ maps (derived from the developed CWSI- θ relations) captured well the applied irrigation patterns and could help to decide when to irrigate and how much water to apply.

Suggested Citation

  • Ekinzog, Elmer Kanjo & Schlerf, Martin & Kraft, Martin & Werner, Florian & Riedel, Angela & Rock, Gilles & Mallick, Kaniska, 2022. "Revisiting crop water stress index based on potato field experiments in Northern Germany," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002116
    DOI: 10.1016/j.agwat.2022.107664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422002116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meinardi, Dominic & Schröder, Johanna & Riedel, Angela & Röttcher, Klaus & Kraft, Martin & Grocholl, Jürgen & Dittert, Klaus, 2021. "Sensorgestützte Beregnung von Kartoffeln: Entwicklung des Crop Water Stress Index für Nordostniedersachsen," Thünen Working Papers 179, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    2. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    3. Agam, N. & Cohen, Y. & Berni, J.A.J. & Alchanatis, V. & Kool, D. & Dag, A. & Yermiyahu, U. & Ben-Gal, A., 2013. "An insight to the performance of crop water stress index for olive trees," Agricultural Water Management, Elsevier, vol. 118(C), pages 79-86.
    4. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Minghan & Sun, Chengming & Nie, Chenwei & Liu, Shuaibing & Yu, Xun & Bai, Yi & Liu, Yadong & Meng, Lin & Jia, Xiao & Liu, Yuan & Zhou, Lili & Nan, Fei & Cui, Tengyu & Jin, Xiuliang, 2023. "Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    3. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    4. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Katimbo, Abia & Rudnick, Daran R. & Liang, Wei-zhen & DeJonge, Kendall C. & Lo, Tsz Him & Franz, Trenton E. & Ge, Yufeng & Qiao, Xin & Kabenge, Isa & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2021. "The mean value of gaussian distribution of excess green index: A new crop water stress indicator," Agricultural Water Management, Elsevier, vol. 251(C).
    7. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2022. "Effects of image spatial resolution and statistical scale on water stress estimation performance of MGDEXG: A new crop water stress indicator derived from RGB images," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Trout, Thomas J., 2016. "Estimating maize water stress by standard deviation of canopy temperature in thermal imagery," Agricultural Water Management, Elsevier, vol. 177(C), pages 400-409.
    9. Luan, Yajun & Xu, Junzeng & Lv, Yuping & Liu, Xiaoyin & Wang, Haiyu & Liu, Shimeng, 2021. "Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging," Agricultural Water Management, Elsevier, vol. 246(C).
    10. Khorsand, Afshin & Rezaverdinejad, Vahid & Asgarzadeh, Hossein & Majnooni-Heris, Abolfazl & Rahimi, Amir & Besharat, Sina, 2019. "Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    11. Vantyghem, Mathilde & Merckx, Roel & Stevens, Bert & Hood-Nowotny, Rebecca & Swennen, Rony & Dercon, Gerd, 2022. "The potential of stable carbon isotope ratios and leaf temperature as proxies for drought stress in banana under field conditions," Agricultural Water Management, Elsevier, vol. 260(C).
    12. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    14. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    15. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    16. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    17. Mwinuka, Paul Reuben & Mbilinyi, Boniface P. & Mbungu, Winfred B. & Mourice, Sixbert K. & Mahoo, H.F. & Schmitter, Petra, 2021. "The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated African eggplant (Solanum aethopicum L)," Agricultural Water Management, Elsevier, vol. 245(C).
    18. Zhang, Minne & Zhao, Weixia & Zhu, Changxin & Li, Jiusheng, 2024. "Influence of the sampling time interval of canopy temperature on the dynamic zoning of variable rate irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
    19. Pappalardo, S. & Consoli, S. & Longo-Minnolo, G. & Vanella, D. & Longo, D. & Guarrera, S. & D’Emilio, A. & Ramírez-Cuesta, J.M., 2023. "Performance evaluation of a low-cost thermal camera for citrus water status estimation," Agricultural Water Management, Elsevier, vol. 288(C).
    20. Bretreger, David & Yeo, In-Young & Hancock, Greg, 2022. "Quantifying irrigation water use with remote sensing: Soil water deficit modelling with uncertain soil parameters," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.