IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v302y2024ics0378377424003342.html
   My bibliography  Save this article

Identification of irrigation events using Bayesian statistics-based change detection and soil moisture measurements

Author

Listed:
  • Gao, Yu-Xin
  • Leng, Pei
  • Li, Jing
  • Shang, Guo-Fei
  • Zhang, Xia
  • Li, Zhao-Liang

Abstract

A comprehensive knowledge of irrigation information is crucial for agricultural water management. However, current investigations have mainly focused on extracting spatial extent of irrigated farmlands and quantifying irrigation amounts, lacking an understanding of irrigation timing at the field scale. In this study, a novel approach for detecting irrigation events from soil moisture (SM) time-series was proposed. To this end, in-situ SM measurements with different depths (10 cm, 25 cm, and 50 cm) were primarily decomposed into seasonal, trend, and residual components using the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) model over a period of seven years from 2014 to 2020. The rationale for the determination of a specific irrigation timing relies on the observed rising abrupt change of SM time-series in its trend component when precipitation is unavailable. Specifically, the BEAST model was primarily optimized over two irrigated farmlands in the University of Nebraska Agricultural Research and Development Center near Mead, Nebraska, US. were subsequently used to identify irrigation. Results indicate that the decomposed SM time-series by the BEAST model correlate well with in-situ SM measurements with an average coefficient of determination of 0.98 and 0.97 over farmlands with continuous maize and maize-soybean rotation, respectively. Furthermore, it was found that SM measurements with a depth of 10 cm are optimal for detecting irrigation timing over the study area. When compared with local irrigation records, the accuracy of detected irrigation timing over farmlands with continuous maize and maize soybean rotation can reach 84 % and 89 %, respectively, revealing promising prospects for deriving irrigation timing with SM measurements. These results provide a reference for detecting irrigation timing using satellite-derived SM data.

Suggested Citation

  • Gao, Yu-Xin & Leng, Pei & Li, Jing & Shang, Guo-Fei & Zhang, Xia & Li, Zhao-Liang, 2024. "Identification of irrigation events using Bayesian statistics-based change detection and soil moisture measurements," Agricultural Water Management, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003342
    DOI: 10.1016/j.agwat.2024.108999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424003342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.