IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v260y2022ics037837742100559x.html
   My bibliography  Save this article

Estimating potential yield and change in water budget for wheat and maize across Huang-Huai-Hai Plain in the future

Author

Listed:
  • Shirazi, Sana Zeeshan
  • Mei, Xurong
  • Liu, Buchun
  • Liu, Yuan

Abstract

Climate change impacts crop productivity as atmospheric conditions and water supply change, particularly in intensive cropping areas. This study used the validated AquaCrop Model, which was run with downscaled daily climate data produced by SDSM and CanESM2. The changes in the potential grain yield of winter wheat and summer maize and water budget during the cropping seasons were estimated for the Huang-Huai-Hai Plain (3H Plain) under RCP4.5 and RCP8.5 scenarios. The results show that the potential yield of winter wheat is increasing with similar spatial patterns in the 2030s, 2050s, and 2080s, with much of the increase is distributed in Shandong and northeastern parts of Henan. During the winter wheat growth period, the water budget deficit will likely improve from −210 mm in the 2030s to −202 mm in 2080s under RCP4.5 and from −206 mm in the 2030s to −191 mm in 2080s under RCP8.5 across the 3H Plain. The water budget during the winter wheat period will continue to be in deficit in the north 3H Plain and improvements are estimated mostly in the lower southern areas of the Plain. The summer maize potential yield is estimated to increase from the baseline period, but yields will decrease by 0.81%, 1.19%, and 2.10% in the 2030s, 2050s, and 2080s, respectively, under RCP8.5 compared to RCP4.5. During the summer maize growth period, the water budget is also estimated to improve from 109 mm in 2030s to 126 mm in 2080s under RCP4.5 and 107 mm in the 2030s to 163 mm in 2080s under RCP8.5. This increase is mainly estimated in the central and south of the 3H Plain. The estimated ETc of winter wheat shows no significant decrease, while the reduction of 6 mm and 13 mm for summer maize is observed under RCP4.5 and RCP8.5, respectively. The study provides scientific evidence to devise adaptation and mitigation climate change strategies for agricultural productivity and water resource management.

Suggested Citation

  • Shirazi, Sana Zeeshan & Mei, Xurong & Liu, Buchun & Liu, Yuan, 2022. "Estimating potential yield and change in water budget for wheat and maize across Huang-Huai-Hai Plain in the future," Agricultural Water Management, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s037837742100559x
    DOI: 10.1016/j.agwat.2021.107282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742100559X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Suxia & Mo, Xingguo & Lin, Zhonghui & Xu, Yueqing & Ji, Jinjun & Wen, Gang & Richey, Jeff, 2010. "Crop yield responses to climate change in the Huang-Huai-Hai Plain of China," Agricultural Water Management, Elsevier, vol. 97(8), pages 1195-1209, August.
    2. Dengpan Xiao & Huizi Bai & De Li Liu, 2018. "Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    3. Su-Jong Jeong & Chang-Hoi Ho & Shilong Piao & Jinwon Kim & Philippe Ciais & Yun-Bok Lee & Jong-Ghap Jhun & Seon Ki Park, 2014. "Effects of double cropping on summer climate of the North China Plain and neighbouring regions," Nature Climate Change, Nature, vol. 4(7), pages 615-619, July.
    4. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    5. Jones, M.R. & Singels, A. & Ruane, A.C., 2015. "Simulated impacts of climate change on water use and yield of irrigated sugarcane in South Africa," Agricultural Systems, Elsevier, vol. 139(C), pages 260-270.
    6. Chao Chen & Walter Baethgen & Andrew Robertson, 2013. "Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003," Climatic Change, Springer, vol. 116(3), pages 767-788, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Junfang & Peng, Huiwen & Yang, Jiaqi & Huang, Ruixi & Huo, Zhiguo & Ma, Yuping, 2024. "Response of winter wheat to different drought levels based on Google Earth Engine in the Huang-Huai-Hai Region, China," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Xue Wang & Xiubin Li, 2018. "Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP): Findings from a Case Study in Cangxian County of Hebei Province," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    3. Wang, Jintao & Dong, Xinliang & Qiu, Rangjian & Lou, Boyuan & Tian, Liu & Chen, Pei & Zhang, Xuejia & Liu, Xiaojing & Sun, Hongyong, 2023. "Optimization of sowing date and irrigation schedule of maize in different cropping systems by APSIM for realizing grain mechanical harvesting in the North China Plain," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Shirazi, Sana Zeeshan & Mei, Xurong & Liu, Buchun & Liu, Yuan, 2021. "Assessment of the AquaCrop Model under different irrigation scenarios in the North China Plain," Agricultural Water Management, Elsevier, vol. 257(C).
    5. Chen, Qiaomin & Liu, Yujie & Ge, Quansheng & Pan, Tao, 2018. "Impacts of historic climate variability and land use change on winter wheat climatic productivity in the North China Plain during 1980–2010," Land Use Policy, Elsevier, vol. 76(C), pages 1-9.
    6. Santillán-Fernández, A. & Santoyo-Cortés, V.H. & García-Chávez, L.R. & Covarrubias-Gutiérrez, I. & Merino, A., 2016. "Influence of drought and irrigation on sugarcane yields in different agroecoregions in Mexico," Agricultural Systems, Elsevier, vol. 143(C), pages 126-135.
    7. Xiangbin Kong & Baoguo Li & Rattan Lal & Lei Han & Hongjun Lei & Kejiang Li & Youlu Bai, 2012. "Soil Organic Carbon Stock and Crop Yields in Huang-Huai-Hai Plains, China," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(12), pages 140-140, November.
    8. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    9. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    10. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    11. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    12. Yingchun Li & Wei Xiong & Wei Hu & Pam Berry & Hui Ju & Erda Lin & Wen Wang & Kuo Li & Jie Pan, 2015. "Integrated assessment of China’s agricultural vulnerability to climate change: a multi-indicator approach," Climatic Change, Springer, vol. 128(3), pages 355-366, February.
    13. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    14. Jinglun Peng & Moonju Kim & Kyungil Sung, 2020. "Yield Prediction Modeling for Sorghum–Sudangrass Hybrid Based on Climatic, Soil, and Cultivar Data in the Republic of Korea," Agriculture, MDPI, vol. 10(4), pages 1-11, April.
    15. Michaela ŠKEŘÍKOVÁ & Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Michael HOFBAUER, 2018. "Water demands and biomass production of sorghum and maize plants in areas with insufficient precipitation in Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 367-378.
    16. Kaihua Liu & Xiyun Jiao & Weihua Guo & Yunhao An & Mohamed Khaled Salahou, 2020. "Improving border irrigation performance with predesigned varied-discharge," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-12, May.
    17. Xiaopei Yi & Naijie Chang & Wuhan Ding & Chi Xu & Jing Zhang & Jianfeng Zhang & Hu Li, 2022. "Modeling Adaptive Strategies on Maintaining Wheat-Corn Production and Reducing Net Greenhouse Gas Emissions under Climate Change," Agriculture, MDPI, vol. 12(8), pages 1-16, July.
    18. Li, Quanqi & Bian, Chengyue & Liu, Xinhui & Ma, Changjian & Liu, Quanru, 2015. "Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain," Agricultural Water Management, Elsevier, vol. 153(C), pages 71-76.
    19. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    20. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s037837742100559x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.