IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v302y2024ics0378377424002968.html
   My bibliography  Save this article

Monthly disaggregation of annual irrigation water demand in the southern Murray Darling Basin

Author

Listed:
  • Ahmed, A.A. Masrur
  • Wang, Quan J.
  • Western, Andrew W.
  • Graham, Tristan D.J.
  • Wu, Wenyan

Abstract

Water demand forecasting plays a crucial role in the efficient planning and management of water distribution systems, particularly in regions facing complex climatic and irrigation dynamics. Fluctuations in water demand occur across both seasonal and sub-seasonal timeframes, driven by diverse factors including weather variations and irrigation management choices. Traditionally, irrigation water demands have been forecasted separately for these two temporal scales, using only subsets of factors most relevant to each specific temporal scale. Sub-seasonal water demands are, however, influenced by annual decisions. This is particularly true in large, complex water systems with extensive water trade and diverse climate conditions. For such systems, a sub-seasonal scale forecast with consideration of annual influencing factors could add significant value to operational management. This paper presents an empirical approach to disaggregate the annual allocation water use for irrigation to a monthly time scale for seven inter-connected regions of the southern Murray-Darling Basin (sMDB), Australia. First, an extensive literature review was conducted to identify the crop coefficient (Kc) values for the crops grown in the sMDB throughout their growth cycles. Following this, a set of monthly Kc values were adopted for nine irrigation activities. Subsequently, the annual allocation water use was disaggregated into monthly volumes using within year proportion of crop water requirement, calculated from reference evapotranspiration and crop coefficients for the seven regions in the sMDB. Finally, the results of the disaggregation approach were compared against the diversion data matched to each region. The disaggregated allocation water use aligns well with the monthly diversion volume. Based on this approach, a monthly water demand forecast model accounting for annual and monthly influencing factors could be developed.

Suggested Citation

  • Ahmed, A.A. Masrur & Wang, Quan J. & Western, Andrew W. & Graham, Tristan D.J. & Wu, Wenyan, 2024. "Monthly disaggregation of annual irrigation water demand in the southern Murray Darling Basin," Agricultural Water Management, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424002968
    DOI: 10.1016/j.agwat.2024.108961
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424002968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.