IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v2y2010i5p1226-1251d8216.html
   My bibliography  Save this article

Measuring Soil Water Potential for Water Management in Agriculture: A Review

Author

Listed:
  • Marco Bittelli

    (Department of Agro Environmental Science and Technology, University of Bologna, Viale Fanin, 44, Bologna, Italy)

Abstract

Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

Suggested Citation

  • Marco Bittelli, 2010. "Measuring Soil Water Potential for Water Management in Agriculture: A Review," Sustainability, MDPI, vol. 2(5), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:2:y:2010:i:5:p:1226-1251:d:8216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/2/5/1226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/2/5/1226/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    2. Kögler, F. & Söffker, D., 2017. "Water (stress) models and deficit irrigation: System-theoretical description and causality mapping," Ecological Modelling, Elsevier, vol. 361(C), pages 135-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:2:y:2010:i:5:p:1226-1251:d:8216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.