IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v277y2023ics037837742200662x.html
   My bibliography  Save this article

A comparison of physical-based and machine learning modeling for soil salt dynamics in crop fields

Author

Listed:
  • Lei, Guoqing
  • Zeng, Wenzhi
  • Yu, Jin
  • Huang, Jiesheng

Abstract

The physical-based and machine learning (ML) models are two distinctive tools for predicting soil salt content (SSC). However, few studies have compared their performances, and it is yet unknown how they differ in terms of simulation accuracy at the field scale. To address this issue, based on a field experiment with sunflowers, a physical-based model and three ML models including distributed random forest (DRF), gradient boosting machine (GBM), and deep learning (Deeplearning) were developed to predict SSC in two common scenarios (A and B). In Scenario A, the SSC was predicted using the training dataset in the in-situ field, while in Scenario B, the SSC was predicted with the training dataset from the other fields. Results show that the physical-based model remains an accurate tool to predict SSC; ML models hold a similar prediction capacity with specific algorithms and input variables. In Scenario A, with limited input variables of the initial status of SSC and related spatiotemporal information, the DRF model achieved better simulation accuracies (R2 higher by 0.05–0.37, NRMSE lower by 0–0.19) than the other two ML models. However, as more input variables were added, the simulation accuracies of the GBM model gradually improved (NRMSE decreased from 0.61 to 0.30) and eventually outperformed the DRF model. Although the variable importance was significant in the Deeplearning model, poor simulation performances were obtained in Scenario A; however, in Scenario B, the simulation accuracy of the Deeplearning model was higher than other ML models, especially for the SSC prediction at the deep soil and during the crop’s late growth period, the median of the NRMSE boxplot approaching 0.31. These simulation results indicated the potential of ML models to substitute the physical-based model for SSC prediction. Still, the preferred ML model differs depending on the prediction scenarios and input variables.

Suggested Citation

  • Lei, Guoqing & Zeng, Wenzhi & Yu, Jin & Huang, Jiesheng, 2023. "A comparison of physical-based and machine learning modeling for soil salt dynamics in crop fields," Agricultural Water Management, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s037837742200662x
    DOI: 10.1016/j.agwat.2022.108115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742200662X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vahid Habibi & Hasan Ahmadi & Mohammad Jafari & Abolfazl Moeini, 2021. "Mapping soil salinity using a combined spectral and topographical indices with artificial neural network," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-13, May.
    2. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    3. Sarangi, A. & Singh, Man & Bhattacharya, A.K. & Singh, A.K., 2006. "Subsurface drainage performance study using SALTMOD and ANN models," Agricultural Water Management, Elsevier, vol. 84(3), pages 240-248, August.
    4. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    5. Feng, Yu & Cui, Ningbo & Gong, Daozhi & Zhang, Qingwen & Zhao, Lu, 2017. "Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling," Agricultural Water Management, Elsevier, vol. 193(C), pages 163-173.
    6. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    8. Zou, Ping & Yang, Jingsong & Fu, Jianrong & Liu, Guangming & Li, Dongshun, 2010. "Artificial neural network and time series models for predicting soil salt and water content," Agricultural Water Management, Elsevier, vol. 97(12), pages 2009-2019, November.
    9. Zhang, Xiaoying & Ma, Funing & Yin, Shangxian & Wallace, Corey D & Soltanian, Mohamad Reza & Dai, Zhenxue & Ritzi, Robert W. & Ma, Ziqi & Zhan, Chuanjun & Lü, Xiaoshu, 2021. "Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: A critical review," Applied Energy, Elsevier, vol. 303(C).
    10. Kumar, P. & Sarangi, A. & Singh, D.K. & Parihar, S.S. & Sahoo, R.N., 2015. "Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model," Agricultural Water Management, Elsevier, vol. 148(C), pages 72-83.
    11. Fan, Junliang & Zheng, Jing & Wu, Lifeng & Zhang, Fucang, 2021. "Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    13. Foster, T. & Brozović, N. & Butler, A.P. & Neale, C.M.U. & Raes, D. & Steduto, P. & Fereres, E. & Hsiao, T.C., 2017. "AquaCrop-OS: An open source version of FAO's crop water productivity model," Agricultural Water Management, Elsevier, vol. 181(C), pages 18-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Liming & Lei, Guoqing & Huang, Jiesheng & Zeng, Wenzhi, 2023. "Improving crop modeling in saline soils by predicting root length density dynamics with machine learning algorithms," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    5. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    6. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    7. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    8. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    9. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    10. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    11. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    12. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    13. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    14. Hunish Bansal & Basavraj Chinagundi & Prashant Singh Rana & Neeraj Kumar, 2022. "An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    15. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    16. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    17. Sylwester Bejger, 2024. "Machine Learning in Cartel Screening—The Case of Parallel Pricing in a Fuel Wholesale Market," Energies, MDPI, vol. 17(16), pages 1-17, August.
    18. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
    19. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    20. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s037837742200662x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.