IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424000817.html
   My bibliography  Save this article

Progress in joint application of crop models and hydrological models

Author

Listed:
  • You, Yang
  • Wang, Yakun
  • Fan, Xiaodong
  • Dai, Qin
  • Yang, Guang
  • Wang, Wene
  • Chen, Dianyu
  • Hu, Xiaotao

Abstract

Climate change has led to extreme weather events and food security issues, which have become urgent global problems. Crop models and hydrological models play important roles in analyzing these issues, but crop models have limitations in large-scale simulations, and hydrological models have shortcomings in depicting underlying surface details. Jointly using the two models to complement each other's shortcomings is becoming an important method, playing an important role in improving the quantitative characterization ability of different facets of agricultural production and is crucial to improving the efficiency of water resources utilization. This paper reviews the development process of crop and hydrological models and summarizes the widely used models at present, providing reference for researchers to select crop and hydrological models; secondly, it summarizes the types, methods, and examples of joint use of models, and analyzes possible problems in model combination; finally, some suggestions are put forward for the joint use of crop and hydrological models, providing a reference for researchers to combine models.

Suggested Citation

  • You, Yang & Wang, Yakun & Fan, Xiaodong & Dai, Qin & Yang, Guang & Wang, Wene & Chen, Dianyu & Hu, Xiaotao, 2024. "Progress in joint application of crop models and hydrological models," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000817
    DOI: 10.1016/j.agwat.2024.108746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCown, R.L. & Hammer, G.L. & Hargreaves, J.N.G. & Holzworth, D. & Huth, N.I., 1995. "APSIM: an agricultural production system simulation model for operational research," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 225-231.
    2. Yang, Meijian & Wang, Guiling & Lazin, Rehenuma & Shen, Xinyi & Anagnostou, Emmanouil, 2021. "Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Wen, Jun & Zhao, Xin-Xin & Fu, Qiang & Chang, Chun-Ping, 2023. "The impact of extreme weather events on green innovation: Which ones bring to the most harm?," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    4. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Siad, Si Mokrane & Iacobellis, Vito & Zdruli, Pandi & Gioia, Andrea & Stavi, Ilan & Hoogenboom, Gerrit, 2019. "A review of coupled hydrologic and crop growth models," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    6. Singh, Anil Kumar & Tripathy, Rojalin & Chopra, Usha Kiran, 2008. "Evaluation of CERES-Wheat and CropSyst models for water-nitrogen interactions in wheat crop," Agricultural Water Management, Elsevier, vol. 95(7), pages 776-786, July.
    7. Khadim, Fahad Khan & Dokou, Zoi & Bagtzoglou, Amvrossios C. & Yang, Meijian & Lijalem, Girmachew Addisu & Anagnostou, Emmanouil, 2021. "A numerical framework to advance agricultural water management under hydrological stress conditions in a data scarce environment," Agricultural Water Management, Elsevier, vol. 254(C).
    8. Jones, D. & Barnes, E. M., 2000. "Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management," Agricultural Systems, Elsevier, vol. 65(3), pages 137-158, September.
    9. Ma, L. & Hoogenboom, G. & Ahuja, L.R. & Ascough II, J.C. & Saseendran, S.A., 2006. "Evaluation of the RZWQM-CERES-Maize hybrid model for maize production," Agricultural Systems, Elsevier, vol. 87(3), pages 274-295, March.
    10. Tsujimoto, K. & Kuriya, N. & Ohta, T. & Homma, K. & Im, M.So, 2022. "Quantifying the GCM-related uncertainty for climate change impact assessment of rainfed rice production in Cambodia by a combined hydrologic - rice growth model," Ecological Modelling, Elsevier, vol. 464(C).
    11. Webber, Heidi & Gaiser, Thomas & Ewert, Frank, 2014. "What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?," Agricultural Systems, Elsevier, vol. 127(C), pages 161-177.
    12. Maniruzzaman, M. & Talukder, M.S.U. & Khan, M.H. & Biswas, J.C. & Nemes, A., 2015. "Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 331-340.
    13. Luo, Li & Sun, Shikun & Xue, Jing & Gao, Zihan & Zhao, Jinfeng & Yin, Yali & Gao, Fei & Luan, Xiaobo, 2023. "Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation," Agricultural Systems, Elsevier, vol. 210(C).
    14. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & He, Hai & He, Jian & Yin, Hao & Zhang, Yaxin, 2021. "Coupled hydrology-crop growth model incorporating an improved evapotranspiration module," Agricultural Water Management, Elsevier, vol. 246(C).
    15. Yanxia Shen & Chunbo Jiang, 2023. "A comprehensive review of watershed flood simulation model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 875-902, September.
    16. Sisse Liv Jørgensen & Mette Termansen, 2016. "Linking climate change perceptions to adaptation and mitigation action," Climatic Change, Springer, vol. 138(1), pages 283-296, September.
    17. Yao, Ning & Li, Yi & Xu, Fang & Liu, Jian & Chen, Shang & Ma, Haijiao & Wai Chau, Henry & Liu, De Li & Li, Meng & Feng, Hao & Yu, Qiang & He, Jianqiang, 2020. "Permanent wilting point plays an important role in simulating winter wheat growth under water deficit conditions," Agricultural Water Management, Elsevier, vol. 229(C).
    18. Li, Yan & Zhou, Qingguo & Zhou, Jian & Zhang, Gaofeng & Chen, Chong & Wang, Jing, 2014. "Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions," Ecological Modelling, Elsevier, vol. 291(C), pages 15-27.
    19. Shoaib Saleem & Jana Levison & Beth Parker & Ralph Martin & Elisha Persaud, 2020. "Impacts of Climate Change and Different Crop Rotation Scenarios on Groundwater Nitrate Concentrations in a Sandy Aquifer," Sustainability, MDPI, vol. 12(3), pages 1-25, February.
    20. Piers Forster, 2018. "Homing in on a key factor of climate change," Nature, Nature, vol. 553(7688), pages 288-289, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahad Khan Khadim & Zoi Dokou & Rehenuma Lazin & Amvrossios C. Bagtzoglou & Emmanouil Anagnostou, 2023. "Groundwater Modeling to Assess Climate Change Impacts and Sustainability in the Tana Basin, Upper Blue Nile, Ethiopia," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    2. Ellenburg, W. Lee & Miller, Sara E. & Mishra, Vikalp & Ndungu, Lilian & Adams, Emily & Das, Narendra & Andreadis, Konstantinos M. & Limaye, Ashutosh, 2024. "Evaluation of a regional crop model implementation for sub-national yield assessments in Kenya," Agricultural Systems, Elsevier, vol. 214(C).
    3. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & He, Hai & He, Jian & Yin, Hao & Zhang, Yaxin, 2021. "Coupled hydrology-crop growth model incorporating an improved evapotranspiration module," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Stergios Emmanouil & Jason Philhower & Sophie Macdonald & Fahad Khan Khadim & Meijian Yang & Ezana Atsbeha & Himaja Nagireddy & Natalie Roach & Elizabeth Holzer & Emmanouil N. Anagnostou, 2021. "A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    5. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    6. Luedeling, Eike & Smethurst, Philip J. & Baudron, Frédéric & Bayala, Jules & Huth, Neil I. & van Noordwijk, Meine & Ong, Chin K. & Mulia, Rachmat & Lusiana, Betha & Muthuri, Catherine & Sinclair, Ferg, 2016. "Field-scale modeling of tree–crop interactions: Challenges and development needs," Agricultural Systems, Elsevier, vol. 142(C), pages 51-69.
    7. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    8. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    9. Paresh B. Shirsath & Vinay Kumar Sehgal & Pramod K. Aggarwal, 2020. "Downscaling Regional Crop Yields to Local Scale Using Remote Sensing," Agriculture, MDPI, vol. 10(3), pages 1-14, March.
    10. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    11. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Wen, Jun & Zhang, Sen & Chang, Chun-Ping & Anugrah, Donni Fajar & Affandi, Yoga, 2023. "Does climate vulnerability promote green investment under energy supply restriction?," Energy Economics, Elsevier, vol. 124(C).
    13. Ma, L. & Ahuja, L.R. & Islam, A. & Trout, T.J. & Saseendran, S.A. & Malone, R.W., 2017. "Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 88-98.
    14. Anshuman Gunawat & Devesh Sharma & Aditya Sharma & Swatantra Kumar Dubey, 2022. "Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2077-2096, March.
    15. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    16. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Wang, Weishu & Rong, Yao & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Data assimilation of soil moisture and leaf area index effectively improves the simulation accuracy of water and carbon fluxes in coupled farmland hydrological model," Agricultural Water Management, Elsevier, vol. 291(C).
    18. DeJonge, Kendall C. & Ascough, James C. & Ahmadi, Mehdi & Andales, Allan A. & Arabi, Mazdak, 2012. "Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments," Ecological Modelling, Elsevier, vol. 231(C), pages 113-125.
    19. Dennis Junior Choruma & Frank Chukwuzuoke Akamagwuna & Nelson Oghenekaro Odume, 2022. "Simulating the Impacts of Climate Change on Maize Yields Using EPIC: A Case Study in the Eastern Cape Province of South Africa," Agriculture, MDPI, vol. 12(6), pages 1-24, May.
    20. Lu, Yang & Chibarabada, Tendai P. & Ziliani, Matteo G. & Onema, Jean-Marie Kileshye & McCabe, Matthew F. & Sheffield, Justin, 2021. "Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.