IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v254y2021ics0378377421002122.html
   My bibliography  Save this article

A numerical framework to advance agricultural water management under hydrological stress conditions in a data scarce environment

Author

Listed:
  • Khadim, Fahad Khan
  • Dokou, Zoi
  • Bagtzoglou, Amvrossios C.
  • Yang, Meijian
  • Lijalem, Girmachew Addisu
  • Anagnostou, Emmanouil

Abstract

Agriculture in Ethiopia has a historical dependency on rainfed (wet season) and surface water-based (dry season) irrigation projects, the performances of which rely heavily on JJAS precipitation. This is more sensitive in the Upper Blue Nile (UBN) basin, where precipitation uncertainty and hydrological droughts often overshadow the effectiveness of these irrigation schemes, challenging the water-food security efforts in general. To explore this issue, we developed a numerical framework, based on a groundwater model using MODFLOW-NWT, coupled with the outputs of the crop model DSSAT. The framework was implemented in an irrigated site namely, the Koga irrigation scheme, located within in the UBN Basin, Ethiopia. The coupling of groundwater modelling with crop water modelling in data scarce environments is a key contribution of this work. The groundwater model was calibrated with in situ data collected via a Citizen Science Initiative (CSI) for hydraulic head (H) and soil moistureθ; and against a distributed hydrological model (CREST) simulated evapotranspiration (ET). Normalized root mean squared error (NRMSE) values of 0.047, 0.05, and 0.06 were obtained through calibration for H, θ, and ET, respectively. The model was specifically used to simulate the vadose zone water availability due to irrigation, and water-food security aspects associated with extremely dry years. We investigated the hydrologic effect of three irrigation scenarios (non-regulated: NREG, regulated: REG, and regulated with groundwater pumping: REG+GW) aimed at reducing crop water stress derived by one-way coupling of MODFLOW with the crop model Decision Support System for Agrotechnology Transfer (DSSAT).

Suggested Citation

  • Khadim, Fahad Khan & Dokou, Zoi & Bagtzoglou, Amvrossios C. & Yang, Meijian & Lijalem, Girmachew Addisu & Anagnostou, Emmanouil, 2021. "A numerical framework to advance agricultural water management under hydrological stress conditions in a data scarce environment," Agricultural Water Management, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002122
    DOI: 10.1016/j.agwat.2021.106947
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tesfaye, A. & Bogale, A. & Namara, Regassa E., 2008. "The impact of small scale irrigation on household food security: the case of Filtino and Godino Irrigation Schemes in Ada Liben District, East Shoa, Ethiopia," Conference Papers h044135, International Water Management Institute.
    2. Nikitas Mylopoulos & Y. Mylopoulos & D. Tolikas & N. Veranis, 2007. "Groundwater modeling and management in a complex lake-aquifer system," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 469-494, February.
    3. Kassahun Birhanu & Tena Alamirew & Megersa Olumana Dinka & Semu Ayalew & Dagnachew Aklog, 2014. "Optimizing Reservoir Operation Policy Using Chance Constraint Nonlinear Programming for Koga Irrigation Dam, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4957-4970, November.
    4. Tesfaye, A. & Bogale, A. & Namara, Regassa E., 2008. "The impact of small scale irrigation on household food security: the case of Filtino and Godino Irrigation Schemes in Ada Liben District, East Shoa, Ethiopia," IWMI Conference Proceedings 246410, International Water Management Institute.
    5. Xiang, Zaichen & Bailey, Ryan T. & Nozari, Soheil & Husain, Zainab & Kisekka, Isaya & Sharda, Vaishali & Gowda, Prasanna, 2020. "DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation strategies in irrigated areas," Agricultural Water Management, Elsevier, vol. 232(C).
    6. You, Liangzhi & Ringler, Claudia & Wood-Sichra, Ulrike & Robertson, Richard & Wood, Stanley & Zhu, Tingju & Nelson, Gerald & Guo, Zhe & Sun, Yan, 2011. "What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach," Food Policy, Elsevier, vol. 36(6), pages 770-782.
    7. Wu, Yao & Liu, Tingxi & Paredes, Paula & Duan, Limin & Pereira, Luis S., 2015. "Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise," Agricultural Water Management, Elsevier, vol. 152(C), pages 222-232.
    8. Stergios Emmanouil & Jason Philhower & Sophie Macdonald & Fahad Khan Khadim & Meijian Yang & Ezana Atsbeha & Himaja Nagireddy & Natalie Roach & Elizabeth Holzer & Emmanouil N. Anagnostou, 2021. "A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    9. Araya, A. & Kisekka, Isaya & Gowda, Prasanna H. & Prasad, P.V. Vara, 2017. "Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM," Agricultural Systems, Elsevier, vol. 150(C), pages 86-98.
    10. Mohamed Dawoud & Madiha Darwish & Mona El-Kady, 2005. "GIS-Based Groundwater Management Model for Western Nile Delta," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 585-604, October.
    11. Yang, Yonghui & Watanabe, Masataka & Zhang, Xiying & Zhang, Jiqun & Wang, Qinxue & Hayashi, Seiji, 2006. "Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 25-44, April.
    12. Yang, Meijian & Wang, Guiling & Lazin, Rehenuma & Shen, Xinyi & Anagnostou, Emmanouil, 2021. "Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Awulachew, Seleshi Bekele, 2008. "A review of hydrology, sediment and water resource use in the Blue Nile Basin," IWMI Working Papers H041833, International Water Management Institute.
    14. R. Hadded & I. Nouiri & O. Alshihabi & J. Maßmann & M. Huber & A. Laghouane & H. Yahiaoui & J. Tarhouni, 2013. "A Decision Support System to Manage the Groundwater of the Zeuss Koutine Aquifer Using the WEAP-MODFLOW Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1981-2000, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahad Khan Khadim & Zoi Dokou & Rehenuma Lazin & Amvrossios C. Bagtzoglou & Emmanouil Anagnostou, 2023. "Groundwater Modeling to Assess Climate Change Impacts and Sustainability in the Tana Basin, Upper Blue Nile, Ethiopia," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    2. Stergios Emmanouil & Jason Philhower & Sophie Macdonald & Fahad Khan Khadim & Meijian Yang & Ezana Atsbeha & Himaja Nagireddy & Natalie Roach & Elizabeth Holzer & Emmanouil N. Anagnostou, 2021. "A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    3. You, Yang & Wang, Yakun & Fan, Xiaodong & Dai, Qin & Yang, Guang & Wang, Wene & Chen, Dianyu & Hu, Xiaotao, 2024. "Progress in joint application of crop models and hydrological models," Agricultural Water Management, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang, Zaichen & Bailey, Ryan T. & Nozari, Soheil & Husain, Zainab & Kisekka, Isaya & Sharda, Vaishali & Gowda, Prasanna, 2020. "DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation strategies in irrigated areas," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Garbero, Alessandra & Songsermsawas, Tisorn, 2016. "Impact of modern irrigation on household production and welfare outcomes: Evidence from the PASIDP project in Ethiopia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235949, Agricultural and Applied Economics Association.
    3. Fitsum Assefa Adela & Joachim Aurbacher & Gumataw Kifle Abebe, 2019. "Small-scale irrigation scheme governance - poverty nexus: evidence from Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 897-913, August.
    4. Garbero, A. & Songsermsawas, T., 2018. "IFAD RESEARCH SERIES 31 - Impact of modern irrigation on household production and welfare outcomes: evidence from the participatory small-scale irrigation development programme (PASIDP) project in Eth," IFAD Research Series 280080, International Fund for Agricultural Development (IFAD).
    5. Mwangi Joseph Kanyua, 2020. "Effect of Imposed Self-Governance on Irrigation Rules Design among Horticultural Producers in Peri-Urban Kenya," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    6. Manh Hung Do & Trung Thanh Nguyen, 2023. "Does irrigation development mitigate weather extremes’ impacts and reduce poverty? Evidence from rural Southeast Asia," TVSEP Working Papers wp-034, Leibniz Universitaet Hannover, Institute for Environmental Economics and World Trade, Project TVSEP.
    7. Sinyolo, Sikhulumile, 2020. "Technology adoption and household food security among rural households in South Africa: The role of improved maize varieties," Technology in Society, Elsevier, vol. 60(C).
    8. Koyachew Enkuahone Kassie & Bamlaku Alamirew Alemu, 2021. "Does irrigation improve household’s food security? The case of Koga irrigation development project in northern Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 291-307, April.
    9. Xu Xu & Guanhua Huang & Zhongyi Qu & Luis Pereira, 2011. "Using MODFLOW and GIS to Assess Changes in Groundwater Dynamics in Response to Water Saving Measures in Irrigation Districts of the Upper Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 2035-2059, June.
    10. H. Delottier & A. Pryet & A. Dupuy, 2017. "Why Should Practitioners be Concerned about Predictive Uncertainty of Groundwater Management Models?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 61-73, January.
    11. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    12. Mehrdad Aslani & Hamed Hashemi-Dezaki & Abbas Ketabi, 2021. "Reliability Evaluation of Smart Microgrids Considering Cyber Failures and Disturbances under Various Cyber Network Topologies and Distributed Generation’s Scenarios," Sustainability, MDPI, vol. 13(10), pages 1-30, May.
    13. Issam Nouiri & Muluneh Yitayew & Jobst Maßmann & Jamila Tarhouni, 2015. "Multi-objective Optimization Tool for Integrated Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5353-5375, November.
    14. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    15. Ali Sardar Shahraki & Javad Shahraki & Seyed Arman Hashemi Monfared, 2021. "An integrated model for economic assessment of environmental scenarios for dust stabilization and sustainable flora–fauna ecosystem in international Hamoun wetland," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 947-967, January.
    16. Radwa A. El Behairy & Ahmed A. El Baroudy & Mahmoud M. Ibrahim & Elsayed Said Mohamed & Dmitry E. Kucher & Mohamed S. Shokr, 2022. "Assessment of Soil Capability and Crop Suitability Using Integrated Multivariate and GIS Approaches toward Agricultural Sustainability," Land, MDPI, vol. 11(7), pages 1-18, July.
    17. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    18. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    19. Simon Meunier & Dale T. Manning & Loic Queval & Judith A. Cherni & Philippe Dessante & Daniel Zimmerle, 2019. "Determinants of the marginal willingness to pay for improved domestic water and irrigation in partially electrified Rwandan villages," Post-Print hal-02179229, HAL.
    20. Fahad Khan Khadim & Zoi Dokou & Rehenuma Lazin & Amvrossios C. Bagtzoglou & Emmanouil Anagnostou, 2023. "Groundwater Modeling to Assess Climate Change Impacts and Sustainability in the Tana Basin, Upper Blue Nile, Ethiopia," Sustainability, MDPI, vol. 15(7), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.