IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v260y2022ics0378377421006016.html
   My bibliography  Save this article

Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review

Author

Listed:
  • Bwambale, Erion
  • Abagale, Felix K.
  • Anornu, Geophrey K.

Abstract

The demand for freshwater resources has increased in recent times and has been exacerbated by escalating global population and increasing drought indices in the world’s agricultural zones. Irrigated agriculture is inevitably a wasteful water user that has deprived other sectors of the scarce resource. Improving water use efficiency in irrigated agriculture is therefore crucial for sustainable agricultural production to thrive. There is potential to improve water use efficiency through smart irrigation systems, especially with the advent of wireless communication technologies, monitoring systems, and advanced control strategies for optimal irrigation scheduling. This paper reviews state-of-the-art smart monitoring and irrigation control strategies that have been used in recent years for irrigation scheduling. From the literature review, closed-loop irrigation control strategies are efficient than open-loop systems which do not cater for uncertainties. It is argued that combining soil-based, plant, and weather-based monitoring methods in a modelling environment with model predictive control can significantly improve water use efficiency. This review shall help researchers and farmers to choose the best irrigation monitoring and control strategy to improve irrigation scheduling in open field agricultural systems.

Suggested Citation

  • Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421006016
    DOI: 10.1016/j.agwat.2021.107324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yi Bu & Ying Ding & Xingkun Liang & Dakota S. Murray, 2018. "Understanding persistent scientific collaboration," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(3), pages 438-448, March.
    2. Xuetao Jia & Ying Huang & Yanhua Wang & Daozong Sun, 2019. "Research on water and fertilizer irrigation system of tea plantation," International Journal of Distributed Sensor Networks, , vol. 15(3), pages 15501477198, March.
    3. Delgoda, Dilini & Saleem, Syed K. & Malano, Hector & Halgamuge, Malka N., 2016. "Root zone soil moisture prediction models based on system identification: Formulation of the theory and validation using field and AQUACROP data," Agricultural Water Management, Elsevier, vol. 163(C), pages 344-353.
    4. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    5. repec:cup:jpenef:v:17:y:2018:i:03:p:251-253_00 is not listed on IDEAS
    6. Taheripour, Farzad & Hertel, Thomas & Sahin, Sebnem, 2016. "Economic and land use impacts of improving water use efficiency in South Asia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236063, Agricultural and Applied Economics Association.
    7. Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020. "Understanding Cryptocurrencies," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
    8. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    10. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    11. Dhritikesh C, 2018. "Understanding the Space of Research," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 4(4), pages 87-93, January.
    12. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    13. Soulis, Konstantinos X. & Elmaloglou, Stamatios & Dercas, Nicholas, 2015. "Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems," Agricultural Water Management, Elsevier, vol. 148(C), pages 258-268.
    14. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    15. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    16. Domínguez-Niño, Jesús María & Oliver-Manera, Jordi & Girona, Joan & Casadesús, Jaume, 2020. "Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors," Agricultural Water Management, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meier, Sebastián & Campos, Pedro & Morales, Arturo & Jobet, Claudio & López-Olivari, Rafael & Palma-Millanao, Rubén & Matus, Iván & Aponte, Humberto & Cartes, Paula & Khan, Naser & Lavanderos, Laura &, 2024. "Genotypic responses to phosphorus and water management in winter wheat: Strategies to increase resource use efficiency and productivity," Agricultural Water Management, Elsevier, vol. 295(C).
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Holden, Petra B. & Ziervogel, Gina & Hoffman, M. Timm & New, Mark G., 2021. "Transition from subsistence grazing to nature-based recreation: A nuanced view of land abandonment in a mountain social-ecological system, southwestern Cape, South Africa," Land Use Policy, Elsevier, vol. 105(C).
    4. Sara Soares & Daniela Terêncio & Luís Fernandes & João Machado & Fernando A.L. Pacheco, 2019. "The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    5. Aijun Guo & Daiwei Jiang & Fanglei Zhong & Xiaojiang Ding & Xiaoyu Song & Qingping Cheng & Yongnian Zhang & Chunlin Huang, 2019. "Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    6. Agnieszka Starzyk & Janusz Marchwiński & Eliza Maciejewska & Piotr Bujak & Kinga Rybak-Niedziółka & Magdalena Grochulska-Salak & Zdzisław Skutnik, 2023. "Resilience in Urban and Architectural Design—The Issue of Sustainable Development for Areas Associated with an Embankment," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    7. Abdulazeez Hudu Wudil & Asghar Ali & Khalid Mushtaq & Sajjad Ahmad Baig & Magdalena Radulescu & Piotr Prus & Muhammad Usman & László Vasa, 2023. "Water Use Efficiency and Productivity of Irrigated Rice Cultivation in Nigeria: An Application of the Stochastic Frontier Approach," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    8. Jin, Kaijun & Zhang, Jihong & Wang, Zhenhua & Zhang, Jinzhu & Liu, Ningning & Li, Miao & Ma, Zhanli, 2024. "Application of deep learning based on thermal images to identify the water stress in cotton under film-mulched drip irrigation," Agricultural Water Management, Elsevier, vol. 299(C).
    9. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    10. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Mbava, N. & Mutema, M. & Zengeni, R. & Shimelis, H. & Chaplot, V., 2020. "Factors affecting crop water use efficiency: A worldwide meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    12. Yin Su & Qifang Zheng & Shenghai Liao, 2022. "Spatio-Temporal Characteristics of Water Ecological Footprint and Countermeasures for Water Sustainability in Japan," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    13. Georgios Bartzas & Konstantinos Komnitsas, 2020. "Environmental Risk Assessment in Agriculture: The Example of Pistacia vera L. Cultivation in Greece," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    14. Bakó, Barna & Berezvai, Zombor & Isztin, Péter & Vigh, Enikő Zita, 2020. "Does Uber affect bicycle-sharing usage? Evidence from a natural experiment in Budapest: A rejoinder," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 564-566.
    15. Nguyen Bich Hong & Mitsuyasu Yabe, 2017. "Improvement in irrigation water use efficiency: a strategy for climate change adaptation and sustainable development of Vietnamese tea production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1247-1263, August.
    16. Mir, R. & Azizyan, G. & Massah, A. & Gohari, A., 2022. "Fossil water: Last resort to resolve long-standing water scarcity?," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Xueqin Jiang & Shanjun Luo & Qin Ye & Xican Li & Weihua Jiao, 2022. "Hyperspectral Estimates of Soil Moisture Content Incorporating Harmonic Indicators and Machine Learning," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    19. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    20. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421006016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.