IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v616y2023i7956d10.1038_s41586-023-05799-x.html
   My bibliography  Save this article

Crop switching can enhance environmental sustainability and farmer incomes in China

Author

Listed:
  • Wei Xie

    (Peking University)

  • Anfeng Zhu

    (Peking University)

  • Tariq Ali

    (Jiangxi Agricultural University)

  • Zhengtao Zhang

    (Beijing Normal University)

  • Xiaoguang Chen

    (Southwestern University of Finance and Economics)

  • Feng Wu

    (Chinese Academy of Sciences)

  • Jikun Huang

    (Peking University)

  • Kyle Frankel Davis

    (University of Delaware
    University of Delaware)

Abstract

Achieving food-system sustainability is a multidimensional challenge. In China, a doubling of crop production since 1990 has compromised other dimensions of sustainability1,2. Although the country is promoting various interventions to enhance production efficiency and reduce environmental impacts3, there is little understanding of whether crop switching can achieve more sustainable cropping systems and whether coordinated action is needed to avoid tradeoffs. Here we combine high-resolution data on crop-specific yields, harvested areas, environmental footprints and farmer incomes to first quantify the current state of crop-production sustainability. Under varying levels of inter-ministerial and central coordination, we perform spatial optimizations that redistribute crops to meet a suite of agricultural sustainable development targets. With a siloed approach—in which each government ministry seeks to improve a single sustainability outcome in isolation—crop switching could realize large individual benefits but produce tradeoffs for other dimensions and between regions. In cases of central coordination—in which tradeoffs are prevented—we find marked co-benefits for environmental-impact reductions (blue water (−4.5% to −18.5%), green water (−4.4% to −9.5%), greenhouse gases (GHGs) (−1.7% to −7.7%), fertilizers (−5.2% to −10.9%), pesticides (−4.3% to −10.8%)) and increased farmer incomes (+2.9% to +7.5%). These outcomes of centrally coordinated crop switching can contribute substantially (23–40% across dimensions) towards China’s 2030 agricultural sustainable development targets and potentially produce global resource savings. This integrated approach can inform feasible targeted agricultural interventions that achieve sustainability co-benefits across several dimensions.

Suggested Citation

  • Wei Xie & Anfeng Zhu & Tariq Ali & Zhengtao Zhang & Xiaoguang Chen & Feng Wu & Jikun Huang & Kyle Frankel Davis, 2023. "Crop switching can enhance environmental sustainability and farmer incomes in China," Nature, Nature, vol. 616(7956), pages 300-305, April.
  • Handle: RePEc:nat:nature:v:616:y:2023:i:7956:d:10.1038_s41586-023-05799-x
    DOI: 10.1038/s41586-023-05799-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-05799-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-05799-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeyu Tang & Xiaoyu Zhang & Ruxin Chen & Chaomin Ge & Jianjun Tang & Yanqiang Du & Peikun Jiang & Xiaobo Fang & Huabao Zheng & Cheng Zhang, 2024. "A Comprehensive Assessment of Rice Straw Returning in China Based on Life Cycle Assessment Method: Implications on Soil, Crops, and Environment," Agriculture, MDPI, vol. 14(7), pages 1-16, June.
    2. Manman Peng & Chaoqun Li & Peng Wang & Xincong Dai, 2024. "Spatio-Temporal Variation and Future Sustainability of Net Primary Productivity from 2001 to 2021 in Hetao Irrigation District, Inner Mongolia," Agriculture, MDPI, vol. 14(4), pages 1-19, April.
    3. Yuhan Zhang & Xu Zhang & Wangyue Zhou & Jianfu Li & Zhenlin Weng & Xueping Gao, 2024. "The Impact of and Mechanism behind High-Standard Farmland Construction in Farmland Abandonment: A Moderated Mediating Analysis," Land, MDPI, vol. 13(6), pages 1-20, June.
    4. Huang, Yihang & Liu, Zhengjia, 2024. "Improving Northeast China’s soybean and maize planting structure through subsidy optimization considering climate change and comparative economic benefit," Land Use Policy, Elsevier, vol. 146(C).
    5. Sun, Jiaxin & Yang, Yanli & Qi, Peng & Zhang, Guangxin & Wu, Yao, 2024. "Development and application of a new water-carbon-economy coupling model (WCECM) for optimal allocation of agricultural water and land resources," Agricultural Water Management, Elsevier, vol. 291(C).
    6. Guo, Shibo & Zhao, Jin & Zhao, Chuang & Guo, Erjing & Liu, Zhijuan & Harrison, Matthew Tom & Liu, Ke & Zhang, Tianyi & Yang, Xiaoguang, 2024. "Adapting crop land-use in line with a changing climate improves productivity, prosperity and reduces greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 217(C).
    7. Wu, Hui & Li, Xiaojuan & Lu, Hongna & Tong, Ling & Kang, Shaozhong, 2023. "Crop acreage planning for economy- resource- efficiency coordination: Grey information entropy based uncertain model," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Deshuo Zhang & Qingning Lin & Shiping Mao, 2024. "Addressing Rural Decline: China’s Practices in Rural Transformation and Farmers’ Income Growth," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
    9. Hua Zhu & Qing Zhang & Hailin You & Ying Liu, 2024. "Multi-Dimensional Assessment, Regional Differences, and Influencing Factors of Agricultural Water Pollution from the Perspective of Grey Water Footprint in Zhejiang Province, China," Agriculture, MDPI, vol. 14(11), pages 1-25, November.
    10. Sun, Xutong & Lv, Aimin & Chen, Dandan & Zhang, Zili & Wang, Xuming & Zhou, Aicun & Xu, Xiaowei & Shao, Qingsong & Zheng, Ying, 2023. "Exogenous spermidine enhanced the water deficit tolerance of Anoectochilus roxburghii by modulating plant antioxidant enzymes and polyamine metabolism," Agricultural Water Management, Elsevier, vol. 289(C).
    11. Yuzhu Zou & Zhenshan Liu & Yan Chen & Yin Wang & Shijing Feng, 2024. "Crop Rotation and Diversification in China: Enhancing Sustainable Agriculture and Resilience," Agriculture, MDPI, vol. 14(9), pages 1-14, August.
    12. Talal Darwish & Amin Shaban & Ghaleb Faour & Ihab Jomaa & Peter Moubarak & Roula Khadra, 2024. "Transforming Irrigated Agriculture in Semi-Arid and Dry Subhumid Mediterranean Conditions: A Case of Protected Cucumber Cultivation," Sustainability, MDPI, vol. 16(22), pages 1-19, November.
    13. Xiuju Feng & Yunchen Zheng & Woraphon Yamaka & Jianxu Liu, 2024. "How Does Agricultural Green Transformation Improve Residents’ Health? Empirical Evidence from China," Agriculture, MDPI, vol. 14(7), pages 1-15, July.
    14. Ying Pan & Ke Shi & Zhongxu Zhao & Yao Li & Junxi Wu, 2024. "The effects of China’s poverty eradication program on sustainability and inequality," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    15. You Li & Huan Tao & Hongying Cao & Xiaoming Wan & Xiaoyong Liao, 2024. "Achieving synergistic benefits through integrated governance of cultivated cadmium contamination via multistakeholder collaboration," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Sun, Jingxin & Sun, Shikun & Yin, Yali & Wang, Yubao & Zhao, Jinfeng & Tang, Yihe & Wu, Pute, 2024. "Decoupling trend and drivers between grain water‑carbon footprint and economy-ecology development in China," Agricultural Systems, Elsevier, vol. 217(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:616:y:2023:i:7956:d:10.1038_s41586-023-05799-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.