IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i11p1760-1768.html
   My bibliography  Save this article

Impact of global warming on cowpea bean cultivation in northeastern Brazil

Author

Listed:
  • Silva, Vicente de P.R.
  • Campos, João H.B.C.
  • Silva, Madson T.
  • Azevedo, Pedro V.

Abstract

This study evaluated the effects of climate change on cowpea bean crop grown in northeastern Brazil based on the reports of the Intergovernmental Panel on Climate Change (IPCC). The water balance model combined with Geographic Information System techniques was used to identify regional areas where the cowpea bean crop will suffer yield reduction due to climate changes. Model input variables were: rainfall, crop coefficients, potential evapotranspiration and duration of the crop cycle. A limit value of 0.5 was adopted for the water requirement satisfaction index (WRSI), being the ratio of actual to maximum evapotranspiration. The acceptable seeding date was defined as the date at which the water balance simulation presented a WRSI value greater than the limit value, with a frequency of at least 80%. An increase in air temperature will cause a significant reduction in the areas currently favorable to cowpea bean crop growth in northeastern Brazil, and it is recommended that bean varieties better suited to high-temperature conditions should be planted.

Suggested Citation

  • Silva, Vicente de P.R. & Campos, João H.B.C. & Silva, Madson T. & Azevedo, Pedro V., 2010. "Impact of global warming on cowpea bean cultivation in northeastern Brazil," Agricultural Water Management, Elsevier, vol. 97(11), pages 1760-1768, November.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1760-1768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00203-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.
    2. Hansen, James W., 2002. "Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges," Agricultural Systems, Elsevier, vol. 74(3), pages 309-330, December.
    3. Harmsen, Eric W. & Miller, Norman L. & Schlegel, Nicole J. & Gonzalez, J.E., 2009. "Seasonal climate change impacts on evapotranspiration, precipitation deficit and crop yield in Puerto Rico," Agricultural Water Management, Elsevier, vol. 96(7), pages 1085-1095, July.
    4. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer Burney & Daniele Cesano & Jarrod Russell & Emilio Rovere & Thais Corral & Nereide Coelho & Laise Santos, 2014. "Climate change adaptation strategies for smallholder farmers in the Brazilian Sertão," Climatic Change, Springer, vol. 126(1), pages 45-59, September.
    2. Khaledi-Alamdari, Mohammad & Majnooni-Heris, Abolfazl & Fakheri-Fard, Ahmad & Russo, Ana, 2023. "Probabilistic climate risk assessment in rainfed wheat yield: Copula approach using water requirement satisfaction index," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Justino, Ludmilla Ferreira & Alves Júnior, José & Battisti, Rafael & Heinemann, Alexandre Bryan & Leite, Caio Vinicius & Evangelista, Adão Wagner Pêgo & Casaroli, Derblai, 2019. "Assessment of economic returns by using a central pivot system to irrigate common beans during the rainfed season in Central Brazil," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Ashley R. Coles & Christopher A. Scott, 2009. "Vulnerability and adaptation to climate change and variability in semi‐arid rural southeastern Arizona, USA," Natural Resources Forum, Blackwell Publishing, vol. 33(4), pages 297-309, November.
    3. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    4. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    5. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    6. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    7. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    8. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    9. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    10. de Guzman, Rosalina G. & Hilario, Flaviana & Ortega, Daisy & Hayman, Peter & Alexander, Bronya, 2010. "El Nino Southern Oscillation in the Philippines: Impacts, Forecasts, and Risk Management," Philippine Journal of Development PJD 2009 Vol. XXXVI No. 1, Philippine Institute for Development Studies.
    11. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    12. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    13. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    14. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    15. Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
    16. Maria Waldinger, 2015. "The effects of climate change on internal and international migration: implications for developing countries," GRI Working Papers 192, Grantham Research Institute on Climate Change and the Environment.
    17. Nyadzi, Emmanuel, 2016. "Climate Variability Since 1970 and Farmers’ Observations in Northern Ghana," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(2).
    18. Basharat Ali & Peter Dahlhaus, 2022. "Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    19. Chang, Yen-Chiang & Wang, Nannan, 2010. "Environmental regulations and emissions trading in China," Energy Policy, Elsevier, vol. 38(7), pages 3356-3364, July.
    20. Carla Roncoli & Christine Jost & Paul Kirshen & Moussa Sanon & Keith Ingram & Mark Woodin & Léopold Somé & Frédéric Ouattara & Bienvenue Sanfo & Ciriaque Sia & Pascal Yaka & Gerrit Hoogenboom, 2009. "From accessing to assessing forecasts: an end-to-end study of participatory climate forecast dissemination in Burkina Faso (West Africa)," Climatic Change, Springer, vol. 92(3), pages 433-460, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:11:p:1760-1768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.