IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v303y2024ics0378377424003585.html
   My bibliography  Save this article

Response of rice's hydraulic transport and photosynthetic capacity to drought-flood abrupt alternation

Author

Listed:
  • Liu, Yong
  • Hu, Tiesong
  • Zhu, Rui
  • Li, Huandi
  • Chen, Qiuwen
  • Jing, Peiran
  • Mahmoud, Ali
  • Wang, Yanxuan
  • Li, Xiang

Abstract

Knowledge of the potential interactive effects of drought and flooding on the maximum carboxylation rate at 25°C (Vmax25) and maximum hydraulic conductance (Kmax) is essential for the precise modeling of crop growth, water-carbon cycling, and crop yield formation. However, the lack of data on drought–flood abrupt alternation (DF) experiments and appropriate models to calibrate parameters without the need to specify photosynthetic and hydraulic transport capacity a priori make it difficult to further our understanding of the potential interaction effects on Vmax25 and Kmax. Hence, this study aimed to investigate the potential effects of interactions between the preceding drought and the subsequent flooding on Vmax25 and Kmax. We propose a nested optimization model for calibrating photosynthetic and hydraulic conductance capacity while simultaneously modeling carbon assimilation rate and stomatal conductance. A two-year DF experiment for rice from 2017 to 2018 was conducted to validate the new framework at the Key Laboratory of Water Resources and Hydropower of Anhui Province, Bengbu, China. The results show that reasonable Kmax and Vmax25 from gas exchange data can be extracted with the proposed nested model framework. We find two distinct interactions between the prior drought and the subsequent flooding on Vmax25 and Kmax: (1) the antagonistic effect of the preceding mild drought on the subsequent-flood-induced reduction of hydraulic transport and photosynthetic capacity, and (2) the synergistic effect of the subsequent flooding on the preceding drought-induced reduction in hydraulic transport and photosynthetic capacity. Revealing the interaction of drought and flooding on Kmax and Vmax25 of rice under DF events helps to understand rice’s response to compound water stress on multiple timescales and the stomatal and non-stomatal co-limitations, and these findings can be used as valuable guidelines for accurately predicting the impact of future extreme weather events on agricultural production.

Suggested Citation

  • Liu, Yong & Hu, Tiesong & Zhu, Rui & Li, Huandi & Chen, Qiuwen & Jing, Peiran & Mahmoud, Ali & Wang, Yanxuan & Li, Xiang, 2024. "Response of rice's hydraulic transport and photosynthetic capacity to drought-flood abrupt alternation," Agricultural Water Management, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003585
    DOI: 10.1016/j.agwat.2024.109023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424003585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Anderegg, 2012. "Complex aspen forest carbon and root dynamics during drought," Climatic Change, Springer, vol. 111(3), pages 983-991, April.
    2. Zhu, Rui & Hu, Tiesong & Wu, Fengyan & Liu, Yong & Zhou, Shan & Wang, Yanxuan, 2023. "Photosynthetic and hydraulic changes caused by water deficit and flooding stress increase rice’s intrinsic water-use efficiency," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Xiang Li & Tiesong Hu & Xin Wang & Ali Mahmoud & Xiang Zeng, 2023. "The New Solution Concept to Ill-Posed Bilevel Programming: Non-Antagonistic Pessimistic Solution," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    4. Brendan Choat & Timothy J. Brodribb & Craig R. Brodersen & Remko A. Duursma & Rosana López & Belinda E. Medlyn, 2018. "Triggers of tree mortality under drought," Nature, Nature, vol. 558(7711), pages 531-539, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Song, Lining & Zhu, Jiaojun & Zheng, Xiao & Li, Xinjunyan & Wang, Kai & Zhang, Jinxin & Wang, Guochen & Sun, Haihong, 2023. "Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions, Northeast China," Agricultural Water Management, Elsevier, vol. 275(C).
    3. Mengyuan Zhang & Shuaipeng Chen & Wenping Liu, 2023. "Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss," Land, MDPI, vol. 12(7), pages 1-18, June.
    4. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Dai, Junjie & Zhao, Ying & Seki, Katsutoshi & Wang, Li, 2024. "Changes in water-use strategies and soil water status of degraded poplar plantations in water-limited areas," Agricultural Water Management, Elsevier, vol. 296(C).
    6. Zhang, Zhongdian & Huang, Mingbin, 2021. "Effect of root-zone vertical soil moisture heterogeneity on water transport safety in soil-plant-atmosphere continuum in Robinia pseudoacacia," Agricultural Water Management, Elsevier, vol. 246(C).
    7. Liu, Qiuyu & Peng, Changhui & Schneider, Robert & Cyr, Dominic & Liu, Zelin & Zhou, Xiaolu & Kneeshaw, Daniel, 2021. "TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    8. Zihe, Liu & Guodong, Jia & Xinxiao, Yu & Weiwei, Lu & Libo, Sun & Yusong, Wang & Baheti, Zierdie, 2021. "Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region," Agricultural Water Management, Elsevier, vol. 253(C).
    9. Scheiter, Simon & Kumar, Dushyant & Pfeiffer, Mirjam & Langan, Liam, 2024. "Modeling drought mortality and resilience of savannas and forests in tropical Asia," Ecological Modelling, Elsevier, vol. 494(C).
    10. Daijun Liu & Adriane Esquivel-Muelbert & Nezha Acil & Julen Astigarraga & Emil Cienciala & Jonas Fridman & Georges Kunstler & Thomas J. Matthews & Paloma Ruiz-Benito & Jonathan P. Sadler & Mart-Jan Sc, 2024. "Mapping multi-dimensional variability in water stress strategies across temperate forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    12. Donna L. Fitzgerald & Stefan Peters & Gregory R. Guerin & Andrew McGrath & Gunnar Keppel, 2023. "Quantifying Dieback in a Vulnerable Population of Eucalyptus macrorhyncha Using Remote Sensing," Land, MDPI, vol. 12(7), pages 1-19, June.
    13. Xianliang Zhang & Tim Rademacher & Hongyan Liu & Lu Wang & Rubén D. Manzanedo, 2023. "Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Zihao Man & Shengquan Che & Changkun Xie & Ruiyuan Jiang & Anze Liang & Hao Wu, 2021. "Effect of Climate Change on CO 2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    15. Zhao Li & Philippe Ciais & Jonathon S. Wright & Yong Wang & Shu Liu & Jingmeng Wang & Laurent Z. X. Li & Hui Lu & Xiaomeng Huang & Lei Zhu & Daniel S. Goll & Wei Li, 2023. "Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Da Sois, Luca & Mencuccini, Maurizio & Castells, Eva & Sanchez-Martinez, Pablo & Martínez-Vilalta, Jordi, 2024. "How are physiological responses to drought modulated by water relations and leaf economics’ traits in woody plants?," Agricultural Water Management, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.