IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v285y2023ics0378377423002433.html
   My bibliography  Save this article

Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in Northern Spain

Author

Listed:
  • Oduor, Brian Omondi
  • Campo-Bescós, Miguel Ángel
  • Lana-Renault, Noemí
  • Casalí, Javier

Abstract

Predicting water quality and quantity response to climate change in a watershed is very difficult due to the complexity and uncertainties in estimating and understanding future hydrological conditions. However, hydrological models could simplify the processes and predict future impacts of agricultural activities. This study aimed to evaluate the applicability of the Soil Water Assessment Tool (SWAT) model for climate change prediction of streamflow and nitrate load in an agricultural Mediterranean watershed in northern Spain. The model was first evaluated for simulating streamflow and nitrate load under rainfed agricultural conditions in the Cidacos River watershed in Navarre, Spain. Then, climate change impact analysis on streamflow and nitrate load was conducted in the short-term (2011–2040), medium-term (2041–2070), and long-term (2071–2100) future projections relative to the historical baseline period (1971–2000) under the RCP4.5 and RCP8.5 CO2 emission scenarios. The model evaluation showed a good model performance result during calibration (2000–2010) and validation (2011–2020) for streamflow (NSE = 0.82/0.83) and nitrate load (NSE = 0.71/0.68), indicating its suitability for adoption in the watershed. The climate change projection results showed a steady decline in streamflow and nitrate load for RCP4.5 and RCP8.5 in all projections, with the long-term projection scenario of RCP8.5 greatly affected. Autumn and winter saw a considerable drop in comparison to spring and summer. The decline in streamflow was attributed to the projected decrease in precipitation and increase in temperatures, while the nitrate load decline was consistent with the projected streamflow decline. Based on these projections, the long-term projection scenarios of RCP8.5 indicate dire situations requiring urgent policy changes and management interventions to minimize and mitigate the resulting climate change effects. Therefore, adapted agricultural management practices are needed to ensure sustainable water resource utilization and efficient nitrogen fertilizer application rates in the watershed to reduce pollution.

Suggested Citation

  • Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Casalí, Javier, 2023. "Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in Northern Spain," Agricultural Water Management, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:agiwat:v:285:y:2023:i:c:s0378377423002433
    DOI: 10.1016/j.agwat.2023.108378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Darren Ficklin & Iris Stewart & Edwin Maurer, 2013. "Effects of projected climate change on the hydrology in the Mono Lake Basin, California," Climatic Change, Springer, vol. 116(1), pages 111-131, January.
    2. Chahor, Y. & Casalí, J. & Giménez, R. & Bingner, R.L. & Campo, M.A. & Goñi, M., 2014. "Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 134(C), pages 24-37.
    3. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    4. Valverde, Pedro & de Carvalho, Mário & Serralheiro, Ricardo & Maia, Rodrigo & Ramos, Vanessa & Oliveira, Bruno, 2015. "Climate change impacts on rainfed agriculture in the Guadiana river basin (Portugal)," Agricultural Water Management, Elsevier, vol. 150(C), pages 35-45.
    5. Funes, Inmaculada & Aranda, Xavier & Biel, Carmen & Carbó, Joaquim & Camps, Francesc & Molina, Antonio J. & Herralde, Felicidad de & Grau, Beatriz & Savé, Robert, 2016. "Future climate change impacts on apple flowering date in a Mediterranean subbasin," Agricultural Water Management, Elsevier, vol. 164(P1), pages 19-27.
    6. Valverde, Pedro & Serralheiro, Ricardo & de Carvalho, Mário & Maia, Rodrigo & Oliveira, Bruno & Ramos, Vanessa, 2015. "Climate change impacts on irrigated agriculture in the Guadiana river basin (Portugal)," Agricultural Water Management, Elsevier, vol. 152(C), pages 17-30.
    7. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    8. Molina-Navarro, Eugenio & Hallack-Alegría, Michelle & Martínez-Pérez, Silvia & Ramírez-Hernández, Jorge & Mungaray-Moctezuma, Alejandro & Sastre-Merlín, Antonio, 2016. "Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe River basin, Mexico," Agricultural Water Management, Elsevier, vol. 175(C), pages 29-42.
    9. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    10. Casalí, J. & Gastesi, R. & Álvarez-Mozos, J. & De Santisteban, L.M. & Lersundi, J. Del Valle de & Giménez, R. & Larrañaga, A. & Goñi, M. & Agirre, U. & Campo, M.A. & López, J.J. & Donézar, M., 2008. "Runoff, erosion, and water quality of agricultural watersheds in central Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 95(10), pages 1111-1128, October.
    11. Giménez, R. & Casalí, J. & Grande, I. & Díez, J. & Campo, M.A. & Álvarez-Mozos, J. & Goñi, M., 2012. "Factors controlling sediment export in a small agricultural watershed in Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 110(C), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Kyllmar, Katarina & Mårtensson, Kristina & Casalí, Javier, 2023. "Quantification of agricultural best management practices impacts on sediment and phosphorous export in a small catchment in southeastern Sweden," Agricultural Water Management, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, vol. 140(C), pages 19-25.
    2. Funes, I. & Savé, R. & de Herralde, F. & Biel, C. & Pla, E. & Pascual, D. & Zabalza, J. & Cantos, G. & Borràs, G. & Vayreda, J. & Aranda, X., 2021. "Modeling impacts of climate change on the water needs and growing cycle of crops in three Mediterranean basins," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Brian Omondi Oduor & Miguel Ángel Campo-Bescós & Noemí Lana-Renault & Alberto Alfaro Echarri & Javier Casalí, 2022. "Evaluation of the Impact of Changing from Rainfed to Irrigated Agriculture in a Mediterranean Watershed in Spain," Agriculture, MDPI, vol. 13(1), pages 1-18, December.
    4. Catarina Esgalhado & Maria Helena Guimaraes, 2020. "Unveiling Contrasting Preferred Trajectories of Local Development in Southeast Portugal," Land, MDPI, vol. 9(3), pages 1-15, March.
    5. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    6. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    7. Carina Almeida & Tiago B. Ramos & João Sobrinho & Ramiro Neves & Rodrigo Proença de Oliveira, 2019. "An Integrated Modelling Approach to Study Future Water Demand Vulnerability in the Montargil Reservoir Basin, Portugal," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    8. Kassahun, Habtamu Tilahun & Nicholson, Charles F. & Jacobsen, Jette Bredahl & Steenhuis, Tammo S., 2016. "Accounting for user expectations in the valuation of reliable irrigation water access in the Ethiopian highlands," Agricultural Water Management, Elsevier, vol. 168(C), pages 45-55.
    9. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    10. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    11. Duarte, A.C. & Mateos, L., 2022. "How changes in cropping intensity affect water usage in an irrigated Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 260(C).
    12. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    13. Yang, Chenyao & Fraga, Helder & van Ieperen, Wim & Santos, João A., 2020. "Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal," Agricultural Systems, Elsevier, vol. 182(C).
    14. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.
    15. Costa, J.M. & Vaz, M. & Escalona, J. & Egipto, R. & Lopes, C. & Medrano, H. & Chaves, M.M., 2016. "Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity," Agricultural Water Management, Elsevier, vol. 164(P1), pages 5-18.
    16. Vamsi Krishna Vema & K. P. Sudheer & A. N. Rohith & I. Chaubey, 2022. "Impact of water conservation structures on the agricultural productivity in the context of climate change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1627-1644, March.
    17. García-López, J. & Lorite, I.J. & García-Ruiz, R. & Ordoñez, R. & Dominguez, J., 2016. "Yield response of sunflower to irrigation and fertilization under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 176(C), pages 151-162.
    18. Ali Firoozzare & Sayed Saghaian & Sasan Esfandiari Bahraseman & Maryam Dehghani Dashtabi, 2023. "Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach," Agriculture, MDPI, vol. 13(6), pages 1-16, June.
    19. García-López, J. & García-Ruiz, R. & Domínguez, J. & Lorite, I.J., 2019. "Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    20. Jeremy Dominic & Ahmad Aris & Wan Sulaiman, 2015. "Factors Controlling the Suspended Sediment Yield During Rainfall Events of Dry and Wet Weather Conditions in A Tropical Urban Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4519-4538, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:285:y:2023:i:c:s0378377423002433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.