IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i6p1215-d1166659.html
   My bibliography  Save this article

Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach

Author

Listed:
  • Ali Firoozzare

    (Department of Agricultural Economics, College of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948978, Iran)

  • Sayed Saghaian

    (Department of Agricultural Economic, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536, USA)

  • Sasan Esfandiari Bahraseman

    (Department of Agricultural Economics, College of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948978, Iran)

  • Maryam Dehghani Dashtabi

    (Department of Agricultural Economics, College of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948978, Iran)

Abstract

The practice of rain-fed agriculture plays a vital role in both the economy and food security, yet it is subject to various challenges such as climate change and institutional barriers. This study employs the Strengths, Weaknesses, Opportunities, and Threats (SWOT) analyses, Best-Worst Method (BWM), and Weighted Aggregated Sum Product Assessment (WASPAS) integrated approach to identify the most effective strategies for improving and developing sustainable rain-fed agriculture in Mashhad, Iran. The SWOT analysis identifies the essential sub-factors for improving and developing sustainable rain-fed agriculture. Then, the BWM method is utilized to assign weights to each sub-factor. Finally, the WASPAS method is used to rank the 19 strategies that can help achieve sustainable rain-fed agriculture. The findings of this study reveal that the strategy of establishing an institutional framework to promote sustainable rain-fed agriculture (WT7) has received the highest score. On the other hand, strategies related to supporting policies at the farm level (ST2, WO3, WT2, WT1) were placed in the middle and final priorities. Thus, it is recommended that in the current context of rain-fed agriculture in Mashhad, policymakers prioritize institutional policies related to rain-fed agriculture over farm-level policies. This study proposes a comprehensive and systematic approach to enhance and promote sustainable rain-fed agriculture.

Suggested Citation

  • Ali Firoozzare & Sayed Saghaian & Sasan Esfandiari Bahraseman & Maryam Dehghani Dashtabi, 2023. "Identifying the Best Strategies for Improving and Developing Sustainable Rain-Fed Agriculture: An Integrated SWOT-BWM-WASPAS Approach," Agriculture, MDPI, vol. 13(6), pages 1-16, June.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1215-:d:1166659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/6/1215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/6/1215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hayashi, Keiichi & Llorca, Lizzida & Rustini, Sri & Setyanto, Prihasto & Zaini, Zulkifli, 2018. "Reducing vulnerability of rainfed agriculture through seasonal climate predictions: A case study on the rainfed rice production in Southeast Asia," Agricultural Systems, Elsevier, vol. 162(C), pages 66-76.
    2. Rockstr m, J. & Barron, J. & Fox, P., 2003. "Water productivity in rain-fed agriculture: challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems," IWMI Books, Reports H032640, International Water Management Institute.
    3. Amin Mahmoudi & Mehdi Abbasi & Xiaopeng Deng, 2022. "Evaluating the Performance of the Suppliers Using Hybrid DEA-OPA Model: A Sustainable Development Perspective," Group Decision and Negotiation, Springer, vol. 31(2), pages 335-362, April.
    4. Ward, Patrick S. & Makhija, Simrin, 2018. "New modalities for managing drought risk in rainfed agriculture: Evidence from a discrete choice experiment in Odisha, India," World Development, Elsevier, vol. 107(C), pages 163-175.
    5. Anastasia Christodoulou & Kevin Cullinane, 2019. "Identifying the Main Opportunities and Challenges from the Implementation of a Port Energy Management System: A SWOT/PESTLE Analysis," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    6. Valverde, Pedro & de Carvalho, Mário & Serralheiro, Ricardo & Maia, Rodrigo & Ramos, Vanessa & Oliveira, Bruno, 2015. "Climate change impacts on rainfed agriculture in the Guadiana river basin (Portugal)," Agricultural Water Management, Elsevier, vol. 150(C), pages 35-45.
    7. Kazemi, Fatemeh & Abolhassani, Leili & Rahmati, Elahe Azam & Sayyad-Amin, Pegah, 2018. "Strategic planning for cultivation of fruit trees and shrubs in urban landscapes using the SWOT method: A case study for the city of Mashhad, Iran," Land Use Policy, Elsevier, vol. 70(C), pages 1-9.
    8. Wani, S. P. & Pathak, P. & Sreedevi, T. K. & Singh, H. P. & Singh, P., 2003. "Efficient management of rainwater for increased crop productivity and groundwater recharge in Asia," IWMI Books, Reports H032643, International Water Management Institute.
    9. Valverde, Pedro & Serralheiro, Ricardo & de Carvalho, Mário & Maia, Rodrigo & Oliveira, Bruno & Ramos, Vanessa, 2015. "Climate change impacts on irrigated agriculture in the Guadiana river basin (Portugal)," Agricultural Water Management, Elsevier, vol. 152(C), pages 17-30.
    10. Chin-Tsai Lin & Cheng-Yu Chiang, 2022. "Development of Strategies for Taiwan’s Corrugated Box Precision Printing Machine Industry—An Implementation for SWOT and EDAS Methods," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catarina Esgalhado & Maria Helena Guimaraes, 2020. "Unveiling Contrasting Preferred Trajectories of Local Development in Southeast Portugal," Land, MDPI, vol. 9(3), pages 1-15, March.
    2. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    3. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    4. Carina Almeida & Tiago B. Ramos & João Sobrinho & Ramiro Neves & Rodrigo Proença de Oliveira, 2019. "An Integrated Modelling Approach to Study Future Water Demand Vulnerability in the Montargil Reservoir Basin, Portugal," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    5. Kassahun, Habtamu Tilahun & Nicholson, Charles F. & Jacobsen, Jette Bredahl & Steenhuis, Tammo S., 2016. "Accounting for user expectations in the valuation of reliable irrigation water access in the Ethiopian highlands," Agricultural Water Management, Elsevier, vol. 168(C), pages 45-55.
    6. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, vol. 140(C), pages 19-25.
    7. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    8. Costa, J.M. & Vaz, M. & Escalona, J. & Egipto, R. & Lopes, C. & Medrano, H. & Chaves, M.M., 2016. "Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity," Agricultural Water Management, Elsevier, vol. 164(P1), pages 5-18.
    9. Vamsi Krishna Vema & K. P. Sudheer & A. N. Rohith & I. Chaubey, 2022. "Impact of water conservation structures on the agricultural productivity in the context of climate change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1627-1644, March.
    10. García-López, J. & Lorite, I.J. & García-Ruiz, R. & Ordoñez, R. & Dominguez, J., 2016. "Yield response of sunflower to irrigation and fertilization under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 176(C), pages 151-162.
    11. Oduor, Brian Omondi & Campo-Bescós, Miguel Ángel & Lana-Renault, Noemí & Casalí, Javier, 2023. "Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in Northern Spain," Agricultural Water Management, Elsevier, vol. 285(C).
    12. García-López, J. & García-Ruiz, R. & Domínguez, J. & Lorite, I.J., 2019. "Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    13. T. R. Sreeshna & P. Athira & B. Soundharajan, 2024. "Impact of Climate Change on Regional Water Availability and Demand for Agricultural Production: Application of Water Footprint Concept," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3785-3817, August.
    14. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    15. Tajana Čop & Mario Njavro, 2022. "Application of Discrete Choice Experiment in Agricultural Risk Management: A Review," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    16. Elliott R. Dossou-Yovo & Sander J. Zwart & Amadou Kouyaté & Ibrahima Ouédraogo & Oladele Bakare, 2018. "Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    17. Mercè Roca & Jaume Albertí & Alba Bala & Laura Batlle-Bayer & Joan Ribas-Tur & Pere Fullana-i-Palmer, 2021. "Sustainability in the Opera Sector: Main Drivers and Limitations to Improve the Environmental Performance of Scenography," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    18. Muhallil Abtahee & Afra Anika Islam & Md. Nazmul Haque & Hasan Zonaed & Samiha Mahzabin Ritu & Sk Md Imdadul Islam & Atiq Zaman, 2023. "Mapping Ecotourism Potential in Bangladesh: The Integration of an Analytical Hierarchy Algorithm and Geospatial Data," Sustainability, MDPI, vol. 15(15), pages 1-28, July.
    19. Jun Geng & Yi Huang & Xiang Li & Yun Zhang, 2023. "Overcoming Barriers to the Adoption of Recycled Construction Materials: A Comprehensive PEST Analysis and Tailored Strategies," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    20. Katerina Fotova Čiković & Ivana Martinčević & Joško Lozić, 2022. "Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(11), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1215-:d:1166659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.