Influence of deficit irrigation and warming on plant water status during the late winter and spring in young olive trees
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2022.108030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fraga, Helder & Pinto, Joaquim G. & Santos, João A., 2020. "Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal," Agricultural Water Management, Elsevier, vol. 237(C).
- Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
- Corell, M. & Pérez-López, D. & Martín-Palomo, M.J. & Centeno, A. & Girón, I. & Galindo, A. & Moreno, M.M. & Moreno, C. & Memmi, H. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Comparison of the water potential baseline in different locations. Usefulness for irrigation scheduling of olive orchards," Agricultural Water Management, Elsevier, vol. 177(C), pages 308-316.
- Correa-Tedesco, Guillermo & Rousseaux, M. Cecilia & Searles, Peter S., 2010. "Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 97(11), pages 1829-1837, November.
- Hueso, A. & Camacho, G. & Gómez-del-Campo, M., 2021. "Spring deficit irrigation promotes significant reduction on vegetative growth, flowering, fruit growth and production in hedgerow olive orchards (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 248(C).
- Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
- García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.
- Lorite, I.J. & Gabaldón-Leal, C. & Ruiz-Ramos, M. & Belaj, A. & de la Rosa, R. & León, L. & Santos, C., 2018. "Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 247-261.
- Pierantozzi, P. & Torres, M. & Tivani, M. & Contreras, C. & Gentili, L. & Parera, C. & Maestri, D., 2020. "Spring deficit irrigation in olive (cv. Genovesa) growing under arid continental climate: Effects on vegetative growth and productive parameters," Agricultural Water Management, Elsevier, vol. 238(C).
- Rousseaux, M. Cecilia & Figuerola, Patricia I. & Correa-Tedesco, Guillermo & Searles, Peter S., 2009. "Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 96(6), pages 1037-1044, June.
- Martín-Palomo, M.J. & Corell, M. & Andreu, L. & López-Moreno, Y.E. & Galindo, A. & Moriana, A., 2021. "Identification of water stress conditions in olive trees through frequencies of trunk growth rate," Agricultural Water Management, Elsevier, vol. 247(C).
- García-Tejera, Omar & López-Bernal, Álvaro & Orgaz, Francisco & Testi, Luca & Villalobos, Francisco J., 2021. "The pitfalls of water potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 243(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
- Georgia-Maria Nteve & Stefanos Kostas & Alexios N. Polidoros & Panagiotis Madesis & Irini Nianiou-Obeidat, 2024. "Adaptation Mechanisms of Olive Tree under Drought Stress: The Potential of Modern Omics Approaches," Agriculture, MDPI, vol. 14(4), pages 1-18, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Corell, M. & Pérez-López, D. & Andreu, L. & Recena, R. & Centeno, A. & Galindo, A. & Moriana, A. & Martín-Palomo, M.J., 2022. "Yield response of a mature hedgerow oil olive orchard to different levels of water stress during pit hardening," Agricultural Water Management, Elsevier, vol. 261(C).
- Tito, Richard & Cruz, Rudi & Nina, Alex & Limonchi, Fabian & Puma-Vilca, Beisit L. & Salinas, Norma & Cosio, Eric G., 2024. "Evapotranspiration, carbon dynamics and water use efficiency in a drip-irrigated olive orchard in arid coastal western South America," Agricultural Water Management, Elsevier, vol. 297(C).
- Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
- Pierantozzi, P. & Torres, M. & Tivani, M. & Contreras, C. & Gentili, L. & Parera, C. & Maestri, D., 2020. "Spring deficit irrigation in olive (cv. Genovesa) growing under arid continental climate: Effects on vegetative growth and productive parameters," Agricultural Water Management, Elsevier, vol. 238(C).
- Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
- Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
- Blanco, Victor & Kalcsits, Lee, 2023. "Long-term validation of continuous measurements of trunk water potential and trunk diameter indicate different diurnal patterns for pear under water limitations," Agricultural Water Management, Elsevier, vol. 281(C).
- Sánchez-Piñero, M. & Martín-Palomo, M.J. & Andreu, L. & Moriana, A. & Corell, M., 2022. "Evaluation of a simplified methodology to estimate the CWSI in olive orchards," Agricultural Water Management, Elsevier, vol. 269(C).
- Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
- Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
- Li, Xianyue & Yang, Peiling & Ren, Shumei & Li, Yunkai & Liu, Honglu & Du, Jun & Li, Pingfeng & Wang, Caiyuan & Ren, Liang, 2010. "Modeling cherry orchard evapotranspiration based on an improved dual-source model," Agricultural Water Management, Elsevier, vol. 98(1), pages 12-18, December.
- Bao, Xiaoyuan & Zhang, Baoyuan & Dai, Menglei & Liu, Xuejing & Ren, Jianhong & Gu, Limin & Zhen, Wenchao, 2024. "Improvement of grain weight and crop water productivity in winter wheat by light and frequent irrigation based on crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 301(C).
- Hueso, A. & Trentacoste, E.R. & Junquera, P. & Gómez-Miguel, V. & Gómez-del-Campo, M., 2019. "Differences in stem water potential during oil synthesis determine fruit characteristics and production but not vegetative growth or return bloom in an olive hedgerow orchard (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
- Elena Georgopoulou & Nikos Gakis & Dimitris Voloudakis & Markos Daskalakis & Yannis Sarafidis & Dimitris P. Lalas & Sevastianos Mirasgedis, 2024. "Effectiveness of Options for the Adaptation of Crop Farming to Climate Change in a Country of the European South," Agriculture, MDPI, vol. 14(10), pages 1-25, October.
- Poirier-Pocovi, Magalie & Volder, Astrid & Bailey, Brian N., 2020. "Modeling of reference temperatures for calculating crop water stress indices from infrared thermography," Agricultural Water Management, Elsevier, vol. 233(C).
- El Hajj, Marcel M. & Johansen, Kasper & Almashharawi, Samer K. & McCabe, Matthew F., 2023. "Water uptake rates over olive orchards using Sentinel-1 synthetic aperture radar data," Agricultural Water Management, Elsevier, vol. 288(C).
- Luis Gomes & Tânia Nobre & Adélia Sousa & Fernando Rei & Nuno Guiomar, 2020. "Hyperspectral Reflectance as a Basis to Discriminate Olive Varieties—A Tool for Sustainable Crop Management," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
- Paulo Flores Ribeiro & José Lima Santos, 2023. "Exploring the Effects of Climate Change on Farming System Choice: A Farm-Level Space-for-Time Approach," Land, MDPI, vol. 12(12), pages 1-15, November.
- Ahmed A. Abdelmoneim & Roula Khadra & Angela Elkamouh & Bilal Derardja & Giovanna Dragonetti, 2023. "Towards Affordable Precision Irrigation: An Experimental Comparison of Weather-Based and Soil Water Potential-Based Irrigation Using Low-Cost IoT-Tensiometers on Drip Irrigated Lettuce," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
More about this item
Keywords
Global warming; Irrigation; Olea europaea; Stem water potential; Stomatal conductance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005777. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.