IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v177y2016icp308-316.html
   My bibliography  Save this article

Comparison of the water potential baseline in different locations. Usefulness for irrigation scheduling of olive orchards

Author

Listed:
  • Corell, M.
  • Pérez-López, D.
  • Martín-Palomo, M.J.
  • Centeno, A.
  • Girón, I.
  • Galindo, A.
  • Moreno, M.M.
  • Moreno, C.
  • Memmi, H.
  • Torrecillas, A.
  • Moreno, F.
  • Moriana, A.

Abstract

Deficit irrigation scheduling needs accurate indicators and in recent decades, continuous plant indicators have been developed. However, threshold values that could be useful in commercial orchards are not commonly reported. The water potential is a discontinuous measurement commonly used as a reference in the description of water stress level. In some fruit trees, such as olive trees, there are several works suggesting threshold values in fully irrigated conditions, but the influence of the evaporative demand is not taken into account. The aim of this work is to compare the values of the fully irrigated water potential in different locations in order to study the estimation of a common baseline. Three mature olive orchards were selected, two in Seville (South Spain) and one in Ciudad Real (Central Spain). There were clear differences between the three orchards during the 2015 season. Orchards in Seville (S-1 and S-2) were close (10km apart) and had the same cultivar (table olive, cv Manzanilla) but they were different in terms of the fruit load (almost no fruit in S-1, medium fruit load in S-2) and distribution of water (single drip line in S-1, double drip line in S-2). The orchard in Ciudad Real (CR) was very different with regards to the olive cultivar (cv Cornicabra) and the location, as it was in a borderline zone for olives growing with very low temperatures that delay the phenological development. In all the orchards, the best baseline was obtained with different climatic measurements, even in S-1 and S-2. When all the data were considered, the best fit was obtained with the average vapour pressure deficit (VPDav). Influence of the location was significant in the interception term of the equations when Temperature was used but not with VPD. This source of variation was reltade with the level of fruit load. Slope of the equations was not affected for the location. The equation obtained was validated with water potential data from previous seasons of S-1 and CR orchards. Maximum temperature presented the best validation results. The usefulness of this baseline is discussed.

Suggested Citation

  • Corell, M. & Pérez-López, D. & Martín-Palomo, M.J. & Centeno, A. & Girón, I. & Galindo, A. & Moreno, M.M. & Moreno, C. & Memmi, H. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Comparison of the water potential baseline in different locations. Usefulness for irrigation scheduling of olive orchards," Agricultural Water Management, Elsevier, vol. 177(C), pages 308-316.
  • Handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:308-316
    DOI: 10.1016/j.agwat.2016.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416303018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corell, M. & Girón, I.F. & Moriana, A. & Dell’Amico, J. & Morales, D. & Moreno, F., 2013. "Extrapolating base-line trunk shrinkage reference equations across olive orchards," Agricultural Water Management, Elsevier, vol. 126(C), pages 1-8.
    2. Moriana, A. & Moreno, F. & Girón, I.F. & Conejero, W. & Ortuño, M.F. & Morales, D. & Corell, M. & Torrecillas, A., 2011. "Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load," Agricultural Water Management, Elsevier, vol. 99(1), pages 121-127.
    3. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.
    4. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees," Agricultural Water Management, Elsevier, vol. 161(C), pages 114-126.
    5. Moreno, F. & Conejero, W. & Martin-Palomo, M.J. & Giron, I.F. & Torrecillas, A., 2006. "Maximum daily trunk shrinkage reference values for irrigation scheduling in olive trees," Agricultural Water Management, Elsevier, vol. 84(3), pages 290-294, August.
    6. Turner, N. C., 1990. "Plant water relations and irrigation management," Agricultural Water Management, Elsevier, vol. 17(1-3), pages 59-73, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calvo, Franco Emmanuel & Trentacoste, Eduardo Rafael & Silvente, Sonia Teresa, 2022. "Vegetative growth, yield, and crop water productivity response to different irrigation regimes in high density walnut orchards (Juglans regia L.) in a semi-arid environment in Argentina," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Coyago-Cruz, Elena & Meléndez-Martínez, Antonio J. & Moriana, Alfonso & Girón, Ignacio F. & Martín-Palomo, María José & Galindo, Alejandro & Pérez-López, David & Torrecillas, Arturo & Beltrán-Sinchigu, 2019. "Yield response to regulated deficit irrigation of greenhouse cherry tomatoes," Agricultural Water Management, Elsevier, vol. 213(C), pages 212-221.
    3. Autovino, Dario & Rallo, Giovanni & Provenzano, Giuseppe, 2018. "Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis," Agricultural Water Management, Elsevier, vol. 203(C), pages 225-235.
    4. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    5. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Galindo, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2020. "Stem water potential-based regulated deficit irrigation scheduling for olive table trees," Agricultural Water Management, Elsevier, vol. 242(C).
    6. Egea, Gregorio & Padilla-Díaz, Carmen M. & Martinez-Guanter, Jorge & Fernández, José E. & Pérez-Ruiz, Manuel, 2017. "Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 210-221.
    7. Blanco, Victor & Kalcsits, Lee, 2023. "Long-term validation of continuous measurements of trunk water potential and trunk diameter indicate different diurnal patterns for pear under water limitations," Agricultural Water Management, Elsevier, vol. 281(C).
    8. Corell, M. & Martín-Palomo, M.J. & Pérez-López, D. & Centeno, A. & Girón, I. & Moreno, F. & Torrecillas, A. & Moriana, A., 2017. "Approach for using trunk growth rate (TGR) in the irrigation scheduling of table olive orchards," Agricultural Water Management, Elsevier, vol. 192(C), pages 12-20.
    9. Iglesias, Maria Agustina & Rousseaux, M. Cecilia & Agüero Alcaras, L. Martín & Hamze, Leila & Searles, Peter S., 2023. "Influence of deficit irrigation and warming on plant water status during the late winter and spring in young olive trees," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Beyá-Marshall, Víctor & Arcos, Emilia & Seguel, Óscar & Galleguillos, Mauricio & Kremer, Cristián, 2022. "Optimal irrigation management for avocado (cv. 'Hass') trees by monitoring soil water content and plant water status," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Sánchez-Piñero, M. & Martín-Palomo, M.J. & Andreu, L. & Moriana, A. & Corell, M., 2022. "Evaluation of a simplified methodology to estimate the CWSI in olive orchards," Agricultural Water Management, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirás-Avalos, José Manuel & Pérez-Sarmiento, Francisco & Alcobendas, Rosalía & Alarcón, Juan José & Mounzer, Oussama & Nicolás, Emilio, 2016. "Reference values of maximum daily trunk shrinkage for irrigation scheduling in mid-late maturing peach trees," Agricultural Water Management, Elsevier, vol. 171(C), pages 31-39.
    2. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    3. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees," Agricultural Water Management, Elsevier, vol. 161(C), pages 114-126.
    4. Corell, M. & Martín-Palomo, M.J. & Pérez-López, D. & Centeno, A. & Girón, I. & Moreno, F. & Torrecillas, A. & Moriana, A., 2017. "Approach for using trunk growth rate (TGR) in the irrigation scheduling of table olive orchards," Agricultural Water Management, Elsevier, vol. 192(C), pages 12-20.
    5. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Limitations and usefulness of maximum daily shrinkage (MDS) and trunk growth rate (TGR) indicators in the irrigation scheduling of table olive trees," Agricultural Water Management, Elsevier, vol. 164(P1), pages 38-45.
    6. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    7. Corell, M. & Girón, I.F. & Galindo, A. & Torrecillas, A. & Torres-Sánchez, R. & Pérez-Pastor, A. & Moreno, F. & Moriana, A., 2014. "Using band dendrometers in irrigation scheduling," Agricultural Water Management, Elsevier, vol. 142(C), pages 29-37.
    8. Corell, M. & Girón, I.F. & Moriana, A. & Dell’Amico, J. & Morales, D. & Moreno, F., 2013. "Extrapolating base-line trunk shrinkage reference equations across olive orchards," Agricultural Water Management, Elsevier, vol. 126(C), pages 1-8.
    9. Conejero, W. & Ortuño, M.F. & Mellisho, C.D. & Torrecillas, A., 2010. "Influence of crop load on maximum daily trunk shrinkage reference equations for irrigation scheduling of early maturing peach trees," Agricultural Water Management, Elsevier, vol. 97(2), pages 333-338, February.
    10. Moriana, A. & Moreno, F. & Girón, I.F. & Conejero, W. & Ortuño, M.F. & Morales, D. & Corell, M. & Torrecillas, A., 2011. "Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load," Agricultural Water Management, Elsevier, vol. 99(1), pages 121-127.
    11. Conesa, M.R. & Torres, R. & Domingo, R. & Navarro, H. & Soto, F. & Pérez-Pastor, A., 2016. "Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes," Agricultural Water Management, Elsevier, vol. 172(C), pages 51-61.
    12. Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
    13. de la Rosa, J.M. & Conesa, M.R. & Domingo, R. & Torres, R. & Pérez-Pastor, A., 2013. "Feasibility of using trunk diameter fluctuation and stem water potential reference lines for irrigation scheduling of early nectarine trees," Agricultural Water Management, Elsevier, vol. 126(C), pages 133-141.
    14. Martín-Palomo, M.J. & Corell, M. & Andreu, L. & López-Moreno, Y.E. & Galindo, A. & Moriana, A., 2021. "Identification of water stress conditions in olive trees through frequencies of trunk growth rate," Agricultural Water Management, Elsevier, vol. 247(C).
    15. Cuevas, M.V. & Torres-Ruiz, J.M. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Fernández, J.E., 2010. "Assessment of trunk diameter variation derived indices as water stress indicators in mature olive trees," Agricultural Water Management, Elsevier, vol. 97(9), pages 1293-1302, September.
    16. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    17. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    18. Fernández, J.E. & Torres-Ruiz, J.M. & Diaz-Espejo, A. & Montero, A. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Cuevas, M.V., 2011. "Use of maximum trunk diameter measurements to detect water stress in mature 'Arbequina' olive trees under deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(12), pages 1813-1821, October.
    19. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    20. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:308-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.