Spring deficit irrigation promotes significant reduction on vegetative growth, flowering, fruit growth and production in hedgerow olive orchards (cv. Arbequina)
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2020.106695
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
- Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (olea europaea L., cv. Morisca) I. - Growth and water relations," Agricultural Water Management, Elsevier, vol. 98(6), pages 941-949, April.
- Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca). II: Water use, fruit and oil yield," Agricultural Water Management, Elsevier, vol. 98(6), pages 950-958, April.
- Grattan, S.R. & Berenguer, M.J. & Connell, J.H. & Polito, V.S. & Vossen, P.M., 2006. "Olive oil production as influenced by different quantities of applied water," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 133-140, September.
- Hueso, A. & Trentacoste, E.R. & Junquera, P. & Gómez-Miguel, V. & Gómez-del-Campo, M., 2019. "Differences in stem water potential during oil synthesis determine fruit characteristics and production but not vegetative growth or return bloom in an olive hedgerow orchard (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Hernandez-Santana, V. & Fernández, J.E. & Cuevas, M.V. & Perez-Martin, A. & Diaz-Espejo, A., 2017. "Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 9-18.
- García, J.M. & Hueso, A. & Gómez-del- Campo, M., 2020. "Deficit irrigation during the oil synthesis period affects olive oil quality in high-density orchards (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 230(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bao, Xiaoyuan & Zhang, Baoyuan & Dai, Menglei & Liu, Xuejing & Ren, Jianhong & Gu, Limin & Zhen, Wenchao, 2024. "Improvement of grain weight and crop water productivity in winter wheat by light and frequent irrigation based on crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 301(C).
- Cui, Ningbo & Wang, Mingjun & Zou, Qingyao & Wang, Zhihui & Jiang, Shouzheng & Chen, Xi & Zha, Yuxuan & Xiang, Lu & Zhao, Lu, 2023. "Water-potassium coupling at different growth stages improved kiwifruit (Actinidia spp.) quality and water/potassium productivity without yield loss in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 289(C).
- Corell, M. & Pérez-López, D. & Andreu, L. & Recena, R. & Centeno, A. & Galindo, A. & Moriana, A. & Martín-Palomo, M.J., 2022. "Yield response of a mature hedgerow oil olive orchard to different levels of water stress during pit hardening," Agricultural Water Management, Elsevier, vol. 261(C).
- Sun, Guangzhao & Hu, Tiantian & Liu, Xiaogang & Peng, Youliang & Leng, Xianxian & Li, Yilin & Yang, Qiliang, 2022. "Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions," Agricultural Water Management, Elsevier, vol. 260(C).
- Iglesias, Maria Agustina & Rousseaux, M. Cecilia & Agüero Alcaras, L. Martín & Hamze, Leila & Searles, Peter S., 2023. "Influence of deficit irrigation and warming on plant water status during the late winter and spring in young olive trees," Agricultural Water Management, Elsevier, vol. 275(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
- Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
- Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
- Martínez-Gimeno, M.A. & Zahaf, A. & Badal, E. & Paz, S. & Bonet, L. & Pérez-Pérez, J.G., 2022. "Effect of progressive irrigation water reductions on super-high-density olive orchards according to different scarcity scenarios," Agricultural Water Management, Elsevier, vol. 262(C).
- Ahumada-Orellana, Luis E. & Ortega-Farías, Samuel & Searles, Peter S., 2018. "Olive oil quality response to irrigation cut-off strategies in a super-high density orchard," Agricultural Water Management, Elsevier, vol. 202(C), pages 81-88.
- Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
- García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.
- Vita Serman, Facundo & Orgaz, Francisco & Starobinsky, Gabriela & Capraro, Flavio & Fereres, Elias, 2021. "Water productivity and net profit of high-density olive orchards in San Juan, Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
- Mouna Aïachi Mezghani & Amel Mguidiche & Faiza Allouche Khebour & Imen Zouari & Faouzi Attia & Giuseppe Provenzano, 2019. "Water Status and Yield Response to Deficit Irrigation and Fertilization of Three Olive Oil Cultivars under the Semi-Arid Conditions of Tunisia," Sustainability, MDPI, vol. 11(17), pages 1-18, September.
- Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
- Girón, I.F. & Corell, M. & Galindo, A. & Torrecillas, E. & Morales, D. & Dell’Amico, J. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Changes in the physiological response between leaves and fruits during a moderate water stress in table olive trees," Agricultural Water Management, Elsevier, vol. 148(C), pages 280-286.
- Corell, M. & Pérez-López, D. & Andreu, L. & Recena, R. & Centeno, A. & Galindo, A. & Moriana, A. & Martín-Palomo, M.J., 2022. "Yield response of a mature hedgerow oil olive orchard to different levels of water stress during pit hardening," Agricultural Water Management, Elsevier, vol. 261(C).
- Memmi, H. & Gijón, M.C. & Couceiro, J.F. & Pérez-López, D., 2016. "Water stress thresholds for regulated deficit irrigation in pistachio trees: Rootstock influence and effects on yield quality," Agricultural Water Management, Elsevier, vol. 164(P1), pages 58-72.
- Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2016. "Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 163(C), pages 146-158.
- Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
- López-Luque, R. & Reca, J. & Martínez, J., 2015. "Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards," Applied Energy, Elsevier, vol. 149(C), pages 13-23.
- Khozaei, Maryam & Kamgar Haghighi, Ali Akbar & Zand Parsa, Shahrokh & Sepaskhah, Ali Reza & Razzaghi, Fatemeh & Yousefabadi, Vali-allah & Emam, Yahya, 2020. "Evaluation of direct seeding and transplanting in sugar beet for water productivity, yield and quality under different irrigation regimes and planting densities," Agricultural Water Management, Elsevier, vol. 238(C).
- Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca). II: Water use, fruit and oil yield," Agricultural Water Management, Elsevier, vol. 98(6), pages 950-958, April.
- Monasterio, Romina P. & Banco, Adriana P. & Caderón, Facundo J. & Trentacoste, Eduardo R., 2021. "Effects of pre-harvest deficit irrigation during the oil accumulation period on fruit characteristics, oil yield extraction, and oil quality in olive cv. Genovesa in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
- Moñino, María José & Blanco-Cipollone, Fernando & Vivas, Antonio & Bodelón, Oscar G. & Prieto, María Henar, 2020. "Evaluation of different deficit irrigation strategies in the late-maturing Japanese plum cultivar 'Angeleno'," Agricultural Water Management, Elsevier, vol. 234(C).
More about this item
Keywords
Irrigation management; Midday stem water potential; Super-intensive orchard; Shoot growth; Pit hardening;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377420322393. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.