Author
Listed:
- Xiao, Liangang
- Lin, Yi
- Chen, Deliang
- Zhao, Kebing
- Wang, Yudi
- You, Zengtao
- Zhao, Rongqin
- Xie, Zhixiang
- Liu, Junguo
Abstract
Thus far, a series of field experiments have been conducted across the globe to investigate the effects of biochar on crop productivity. However, a comprehensive evaluation of the improvement potential of crop yield, water use, and relevant underlying drivers after adding biochar remains lacking. A synthesis based on global field experiments was conducted herein to investigate the efficacy of biochar in crop-yield and water-use improvement, taking a range of potential impacting factors into account. The results showed that biochar significantly increased crop yield and crop water productivity (WPc), by 11.2 % and 14.8 %, respectively, but caused a significant decline (1.8 %) in crop evapotranspiration (ETc). The highest crop-yield improvement was reached at an application rate of > 20 t ha−1 in the initial year after adding biochar. Low C/N, high pyrolysis temperature, low pH, and wood-based raw materials were found to be beneficial biochar properties for increasing crop production. Biochar generally performed better in soils of low pH and low fertility, especially in hot and humid climates. There was a higher increase in crop yield for corn compared with those for wheat and rice. In addition, changes in WPc were generally commensurate with those of crop yield in most scenarios. Conditions beneficial for crop-yield improvement tend to result in a higher increase in WPc through their effects on ETc. Overall, this study illustrates that crop yield improvement is closely related to improvements in both soil fertility and water use. The latter represents an important factor related to crop growth and productivity through the regulation of evaporation and transpiration after biochar amendment. Despite the promising performance of biochar in promoting crop yield and WPc, a further challenge involves ways to maximize the effects of biochar across global croplands by properly considering the impacting factors during the process of policy design and implementation.
Suggested Citation
Xiao, Liangang & Lin, Yi & Chen, Deliang & Zhao, Kebing & Wang, Yudi & You, Zengtao & Zhao, Rongqin & Xie, Zhixiang & Liu, Junguo, 2024.
"Maximizing crop yield and water productivity through biochar application: A global synthesis of field experiments,"
Agricultural Water Management, Elsevier, vol. 305(C).
Handle:
RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004700
DOI: 10.1016/j.agwat.2024.109134
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004700. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.