IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423003888.html
   My bibliography  Save this article

Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review

Author

Listed:
  • Chen, Yu
  • Zhang, Jian-Hua
  • Chen, Mo-Xian
  • Zhu, Fu-Yuan
  • Song, Tao

Abstract

This review emphasizes the significance of combining regulated deficit irrigation (RDI) with woody crops, as they have higher water productivity (WP) and are tolerant to mild water deficits. After conducting the analysis, it was found that for most woody crops, reducing irrigation water by 20.0–30.0% has a negligible impact on yield, typically within a variation range of 10.0%, and it leads to an increase in WP of 10.0–30.0%. When irrigation water is reduced by 40.0–50.0%, the impact on yield varies significantly depending on the species, but the WP generally approaches its highest value; in general, it can increase by 25.0% or more and sometimes even exceed 50.0%. However, when irrigation water is further reduced, it significantly affects yield, and there is a limited increase or even decrease in WP. Moreover, adjusting irrigation amounts during noncritical water demand periods minimizes the impact on yield and fruit size, enhancing water-saving effectiveness. Water-saving techniques trigger various plant responses, improving resistance to water deficits, promoting reproductive growth, and protecting against drought-related damage. Despite potential yield reductions, ongoing research demonstrates positive outcomes in WP, crop yield, and fruit quality in various woody crops. Water-saving techniques offer economic benefits through cost savings and pest reduction, while finding the appropriate balance between water use, yield, and quality is vital for agricultural success and sustainable water resource management. Moreover, water-saving techniques optimize nutrient uptake and heavy metal absorption in woody crop agricultural systems, addressing heavy metal stress, soil salinization, and emissions. Combining multiple irrigation methods, such as partial root-zone drying (PRD), shows immense potential in water conservation and impact on fruits. Integrating PRD with innovative techniques, such as precision irrigation or sensor-based systems, promises remarkable water savings and optimized crop yields, revolutionizing agricultural practices and addressing water scarcity challenges for sustainable irrigation management.

Suggested Citation

  • Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003888
    DOI: 10.1016/j.agwat.2023.108523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayars, James E. & Phene, Claude J. & Phene, Rebecca C. & Gao, Suduan & Wang, Dong & Day, Kevin R. & Makus, Donald J., 2017. "Determining pomegranate water and nitrogen requirements with drip irrigation," Agricultural Water Management, Elsevier, vol. 187(C), pages 11-23.
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Beyá-Marshall, Víctor & Arcos, Emilia & Seguel, Óscar & Galleguillos, Mauricio & Kremer, Cristián, 2022. "Optimal irrigation management for avocado (cv. 'Hass') trees by monitoring soil water content and plant water status," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Silveira, Laís Karina & Pavão, Glaucia Cristina & dos Santos Dias, Carlos Tadeu & Quaggio, José Antonio & Pires, Regina Célia de Matos, 2020. "Deficit irrigation effect on fruit yield, quality and water use efficiency: A long-term study on Pêra-IAC sweet orange," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Qi Wei & Junzeng Xu & Yawei Li & Linxian Liao & Boyi Liu & Guangqiu Jin & Fazli Hameed, 2018. "Reducing Surface Wetting Proportion of Soils Irrigated by Subsurface Drip Irrigation Can Mitigate Soil N 2 O Emission," IJERPH, MDPI, vol. 15(12), pages 1-16, December.
    6. Egea, Gregorio & Fernández, José E. & Alcon, Francisco, 2017. "Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 47-56.
    7. Muhammad Umair & Tabassum Hussain & Hanbing Jiang & Ayesha Ahmad & Jiawei Yao & Yongqing Qi & Yucui Zhang & Leilei Min & Yanjun Shen, 2019. "Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    8. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    9. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Cao, Xiaoqing & Yang, Peiling & Engel, Bernard A. & Li, Pingfeng, 2018. "The effects of rainfall and irrigation on cherry root water uptake under drip irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 9-18.
    11. Wang, Yadong & Liu, Chun & Cui, Pengfei & Su, Derong, 2021. "Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Walter P. Falcon & Rosamond L. Naylor & Nikhil D. Shankar, 2022. "Rethinking Global Food Demand for 2050," Population and Development Review, The Population Council, Inc., vol. 48(4), pages 921-957, December.
    13. Ma, Xiaochi & Han, Feng & Wu, Jinggui & Ma, Yan & Jacoby, Pete W., 2023. "Optimizing crop water productivity and altering root distribution of Chardonnay grapevine (Vitis vinifera L.) in a silt loam soil through direct root-zone deficit irrigation," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Hernández, M. Luisa & Velázquez-Palmero, David & Sicardo, M. Dolores & Fernández, José E. & Diaz-Espejo, Antonio & Martínez-Rivas, José M., 2018. "Effect of a regulated deficit irrigation strategy in a hedgerow ‘Arbequina’ olive orchard on the mesocarp fatty acid composition and desaturase gene expression with respect to olive oil quality," Agricultural Water Management, Elsevier, vol. 204(C), pages 100-106.
    15. Shihong Yang & Zewei Jiang & Xiao Sun & Jie Ding & Junzeng Xu, 2018. "Effects of Biochar Amendment on CO 2 Emissions from Paddy Fields under Water-Saving Irrigation," IJERPH, MDPI, vol. 15(11), pages 1-12, November.
    16. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    17. Wang, Yaosheng & Jensen, Christian R. & Liu, Fulai, 2017. "Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 254-259.
    18. Santos, Dionei Lima & Coelho, Eugênio Ferreira & Cunha, Fernando França da & Donato, Sérgio Luiz Rodrigues & Bernado, Wallace de Paula & Rodrigues, Weverton Pereira & Campostrini, Eliemar, 2021. "Partial root-zone drying in field-grown papaya: Gas exchange, yield, and water use efficiency," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Adu, Michael O. & Yawson, David O. & Armah, Frederick A. & Asare, Paul A. & Frimpong, Kwame A., 2018. "Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 79-90.
    20. Spinelli, Gerardo M. & Snyder, Richard L. & Sanden, Blake L. & Gilbert, Matthew & Shackel, Ken A., 2018. "Low and variable atmospheric coupling in irrigated Almond (Prunus dulcis) canopies indicates a limited influence of stomata on orchard evapotranspiration," Agricultural Water Management, Elsevier, vol. 196(C), pages 57-65.
    21. Alrajhi, Abdullah & Beecham, Simon & Hassanli, Ali, 2017. "Effects of partial root-zone drying irrigation and water quality on soil physical and chemical properties," Agricultural Water Management, Elsevier, vol. 182(C), pages 117-125.
    22. Xing Liu & Zhaoyang Cai & Yan Xu & Huihui Zheng & Kaige Wang & Fengrong Zhang, 2022. "Suitability Evaluation of Cultivated Land Reserved Resources in Arid Areas Based on Regional Water Balance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1463-1479, March.
    23. Montoro, A. & Mañas, F. & López-Urrea, R., 2016. "Transpiration and evaporation of grapevine, two components related to irrigation strategy," Agricultural Water Management, Elsevier, vol. 177(C), pages 193-200.
    24. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    25. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping, 2006. "Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain," Agricultural Water Management, Elsevier, vol. 79(3), pages 248-264, February.
    26. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    27. Al-Ghobari, Hussein M. & Dewidar, Ahmed Z., 2018. "Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions," Agricultural Water Management, Elsevier, vol. 209(C), pages 55-61.
    28. Clothier, Brent & Jovanovic, Nebo & Zhang, Xiying, 2020. "Reporting on water productivity and economic performance at the water-food nexus," Agricultural Water Management, Elsevier, vol. 237(C).
    29. Espadafor, M. & Orgaz, F. & Testi, L. & Lorite, I.J. & García-Tejera, O. & Villalobos, F.J. & Fereres, E., 2018. "Almond tree response to a change in wetted soil volume under drip irrigation," Agricultural Water Management, Elsevier, vol. 202(C), pages 57-65.
    30. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G, 2016. "Subsurface drip irrigation affects trunk diameter fluctuations in lemon trees, in comparison with surface drip irrigation," Agricultural Water Management, Elsevier, vol. 165(C), pages 11-21.
    31. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    32. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    33. Mbava, N. & Mutema, M. & Zengeni, R. & Shimelis, H. & Chaplot, V., 2020. "Factors affecting crop water use efficiency: A worldwide meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    34. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    35. Maestre-Valero, J.F. & Martin-Gorriz, B. & Nicolas, E. & Martinez-Mate, M.A. & Martinez-Alvarez, V., 2018. "Deficit irrigation with reclaimed water in a citrus orchard. Energy and greenhouse-gas emissions analysis," Agricultural Systems, Elsevier, vol. 159(C), pages 93-102.
    36. Maestre-Valero, J.F. & Martin-Gorriz, B. & Alarcón, J.J. & Nicolas, E. & Martinez-Alvarez, V., 2016. "Economic feasibility of implementing regulated deficit irrigation with reclaimed water in a grapefruit orchard," Agricultural Water Management, Elsevier, vol. 178(C), pages 119-125.
    37. Moñino, María José & Blanco-Cipollone, Fernando & Vivas, Antonio & Bodelón, Oscar G. & Prieto, María Henar, 2020. "Evaluation of different deficit irrigation strategies in the late-maturing Japanese plum cultivar 'Angeleno'," Agricultural Water Management, Elsevier, vol. 234(C).
    38. Josefin Thorslund & Marc F. P. Bierkens & Gualbert H. P. Oude Essink & Edwin H. Sutanudjaja & Michelle T. H. Vliet, 2021. "Common irrigation drivers of freshwater salinisation in river basins worldwide," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    39. Koumanov, K. S. & Hopmans, J. W. & Schwankl, L. J. & Andreu, L. & Tuli, A., 1997. "Application efficiency of micro-sprinkler irrigation of almond trees," Agricultural Water Management, Elsevier, vol. 34(3), pages 247-263, October.
    40. Puig-Sirera, Àngela & Provenzano, Giuseppe & González-Altozano, Pablo & Intrigliolo, Diego S. & Rallo, Giovanni, 2021. "Irrigation water saving strategies in Citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit," Agricultural Water Management, Elsevier, vol. 248(C).
    41. Volschenk, Theresa, 2021. "Effect of water deficits on pomegranate tree performance and fruit quality – A review," Agricultural Water Management, Elsevier, vol. 246(C).
    42. Zhaoyang Li & Rui Zong & Tianyu Wang & Zhenhua Wang & Jinzhu Zhang, 2021. "Adapting Root Distribution and Improving Water Use Efficiency via Drip Irrigation in a Jujube ( Zizyphus jujube Mill.) Orchard after Long-Term Flood Irrigation," Agriculture, MDPI, vol. 11(12), pages 1-16, November.
    43. Intrigliolo, D.S. & Lizama, V. & García-Esparza, M.J. & Abrisqueta, I. & Álvarez, I., 2016. "Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition," Agricultural Water Management, Elsevier, vol. 170(C), pages 110-119.
    44. Salgado, E. & Cauti­n, R., 2008. "Avocado root distribution in fine and coarse-textured soils under drip and microsprinkler irrigation," Agricultural Water Management, Elsevier, vol. 95(7), pages 817-824, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    4. Zheng, Shunsheng & Jiang, Shouzheng & Cui, Ningbo & Zhao, Lu & Gong, Daozhi & Wang, Yaosheng & Wu, Zongjun & Liu, Quanshan, 2023. "Deficit drip irrigation improves kiwifruit quality and water productivity under rain-shelter cultivation in the humid area of South China," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    8. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    9. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    10. Cabezas, J.M. & Ruiz-Ramos, M. & Soriano, M.A. & Santos, C. & Gabaldón-Leal, C. & Lorite, I.J., 2021. "Impact of climate change on economic components of Mediterranean olive orchards," Agricultural Water Management, Elsevier, vol. 248(C).
    11. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).
    12. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    13. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    14. Amarasinghe, Upali A. & Sikka, Alok & Mandave, Vidya & Panda, R. K. & Gorantiwar, S. & Ambast, S. K., 2021. "Improving economic water productivity to enhance resilience in canal irrigation systems: a pilot study of the Sina Irrigation System in Maharashtra, India," Papers published in Journals (Open Access), International Water Management Institute, pages 23(2):447-4.
    15. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    16. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    17. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    18. Wang, Dong & Zhang, Huihui & Gartung, Jim, 2020. "Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    19. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    20. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.