IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v158y2015icp61-68.html
   My bibliography  Save this article

Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress

Author

Listed:
  • Akhtar, Saqib Saleem
  • Andersen, Mathias Neumann
  • Liu, Fulai

Abstract

Salinity is one of the major threats to global food security. Biochar amendment could alleviate the negative impacts of salt stress in crop in the season. However, its long-term residual effect on reducing Na+ uptake in latter crops remains unknown. A pot experiment with wheat was conducted in a greenhouse. The soil used was from an earlier experiment on potato where the plants were irrigated with tap water (S0), 25mM (S1) and 50mM (S2) NaCl solutions and with 0 and 5% (w/w) biochar amendment. At onset of the experiment, three different EC levels at S0, S1 and S2 were established in the non-biochar control (2.3, 7.2 and 10.9dSm−1) and the biochar amended (2.8, 8.1 and 11.8dSm−1) soils, respectively. A column leaching experiment was also conducted in the greenhouse to study the adsorption capacity of biochar to Na+. The results indicated that biochar addition reduced plant sodium uptake by transient Na+ binding due to its high adsorption capacity, decreasing osmotic stress by enhancing soil moisture content, and by releasing mineral nutrients (particularly K+, Ca++, Mg++) into the soil solution. Growth, physiology and yield of wheat were affected positively with biochar amendment, particularly under high salinity level. It was concluded that addition of biochar had significant residual effect on reducing Na+ uptake in wheat under salinity stress. However, more detailed field studies should be carried out to evaluate the long-term residual effects of biochar for sustaining crop production in saline soils.

Suggested Citation

  • Akhtar, Saqib Saleem & Andersen, Mathias Neumann & Liu, Fulai, 2015. "Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress," Agricultural Water Management, Elsevier, vol. 158(C), pages 61-68.
  • Handle: RePEc:eee:agiwat:v:158:y:2015:i:c:p:61-68
    DOI: 10.1016/j.agwat.2015.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415001353
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
    2. Oster, J. D., 1994. "Irrigation with poor quality water," Agricultural Water Management, Elsevier, vol. 25(3), pages 271-297, July.
    3. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    4. van Hoorn, J. W. & Katerji, N. & Hamdy, A. & Mastrorilli, M., 2001. "Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil," Agricultural Water Management, Elsevier, vol. 51(2), pages 87-98, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haijun Sun & Huanchao Zhang & Weiming Shi & Mengyi Zhou & Xiaofang Ma, 2019. "Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(2), pages 83-89.
    2. María Alcívar & Andrés Zurita-Silva & Marco Sandoval & Cristina Muñoz & Mauricio Schoebitz, 2018. "Reclamation of Saline–Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    3. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).
    4. Maru Ali & Osumanu Haruna Ahmed & Mohamadu Boyie Jalloh & Walter Charles Primus & Adiza Alhassan Musah & Ji Feng Ng, 2023. "Co-Composted Chicken Litter Biochar Increases Soil Nutrient Availability and Yield of Oryza sativa L," Land, MDPI, vol. 12(1), pages 1-20, January.
    5. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    6. Li, Yi & Yao, Ning & Liang, Jiaping & Wang, Xiaofang & Niu, Ben & Jia, Yonglin & Jiang, Fuchang & Yu, Qiang & Liu, De Li & Feng, Hao & He, Hailong & Yang, Guang & Pulatov, Alim, 2023. "Rational biochar application rate for cotton nutrient content, growth, yields, productivity, and economic benefits under film-mulched trickle irrigation," Agricultural Water Management, Elsevier, vol. 276(C).
    7. Younes Gaga & Imane Mehdaoui & Mohammed Kara & Amine Assouguem & Abdulrahman Al-Hashimi & Mohamed Ragab AbdelGawwad & Mohamed S. Elshikh & El Mokhtar Saoudi Hassani & Mona S. Alwahibi & Jamila Bahhou , 2023. "Elaboration and Characterization of a Biochar from Wastewater Sludge and Olive Mill Wastewater," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    8. Li, Yi & Yao, Ning & Liang, Jiaping & Wang, Xiaofang & Jia, Yonglin & Jiang, Fuchang & Liu, De Li & Hu, Wei & He, Hailong & Javed, Tehseen, 2022. "Optimum biochar application rate for peak economic benefit of sugar beet in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Abdul Hallim Majidi, 2022. "Effect Of Different Biochar Concentration On The Growth Of Three Agricultural Plants In Afghanistan," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 01-07, December.
    10. Peijun Wang & Qi Liu & Shenglong Fan & Jing Wang & Shouguo Mu & Chunbo Zhu, 2023. "Combined Application of Desulfurization Gypsum and Biochar for Improving Saline-Alkali Soils: A Strategy to Improve Newly Reclaimed Cropland in Coastal Mudflats," Land, MDPI, vol. 12(9), pages 1-22, September.
    11. Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).
    14. Marta Wyzińska & Adam Kleofas Berbeć & Jerzy Grabiński, 2023. "Impact of Biochar Dose and Origin on Winter Wheat Grain Quality and Quantity," Agriculture, MDPI, vol. 14(1), pages 1-15, December.
    15. Chong Tang & Jingsong Yang & Wenping Xie & Rongjiang Yao & Xiangping Wang, 2023. "Effect of Biochar Application on Soil Fertility, Nitrogen Use Efficiency and Balance in Coastal Salt-Affected Soil under Barley–Maize Rotation," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    16. Mukesh Kumar Soothar & Abdoul Kader Mounkaila Hamani & Mahendar Kumar Sootahar & Jingsheng Sun & Gao Yang & Saleem Maseeh Bhatti & Adama Traore, 2021. "Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize ( Zea mays L.) Seedlings under Salinity Stress," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    17. Funk, Bryana & Amer, Saud A. & Ward, Frank A., 2023. "Sustainable aquifer management for food security," Agricultural Water Management, Elsevier, vol. 281(C).
    18. Günal, Elif & Erdem, Halil & Çelik, İsmail, 2018. "Effects of three different biochars amendment on water retention of silty loam and loamy soils," Agricultural Water Management, Elsevier, vol. 208(C), pages 232-244.
    19. Guo, Lili & Bornø, Marie Louise & Niu, Wenquan & Liu, Fulai, 2021. "Biochar amendment improves shoot biomass of tomato seedlings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    4. Jayanta Layek & Rumi Narzari & Samarendra Hazarika & Anup Das & Krishnappa Rangappa & Shidayaichenbi Devi & Arumugam Balusamy & Saurav Saha & Sandip Mandal & Ramkrushna Gandhiji Idapuganti & Subhash B, 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    5. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    6. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    7. Chih-Chun Kung & Meng-Shiuh Chang, 2015. "Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    8. Kung, Chih-Chun & Mu, Jianhong E., 2019. "Prospect of China's renewable energy development from pyrolysis and biochar applications under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Sarah A. Doydora & Miguel L. Cabrera & Keshav C. Das & Julia W. Gaskin & Leticia S. Sonon & William P. Miller, 2011. "Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar," IJERPH, MDPI, vol. 8(5), pages 1-12, May.
    10. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    11. Juan Luis Aguirre & Sergio González-Egido & María González-Lucas & Francisco Miguel González-Pernas, 2023. "Medium-Term Effects and Economic Analysis of Biochar Application in Three Mediterranean Crops," Energies, MDPI, vol. 16(10), pages 1-18, May.
    12. Meng-Shiuh Chang & Chih-Chun Kung, 2014. "Nonparametric Forecasting for Biochar Utilization in Poyang Lake Eco-Economic Zone in China," Sustainability, MDPI, vol. 6(1), pages 1-16, January.
    13. Kung, Chih-Chun & Zhang, Ning, 2015. "Renewable energy from pyrolysis using crops and agricultural residuals: An economic and environmental evaluation," Energy, Elsevier, vol. 90(P2), pages 1532-1544.
    14. Laine, Jorge, 2012. "Perspective of the preparation of agrichars using fossil hydrocarbon coke," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5597-5602.
    15. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    16. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. Kung, Chih-Chun & Fei, Chengcheng J. & McCarl, Bruce A. & Fan, Xinxin, 2022. "A review of biopower and mitigation potential of competing pyrolysis methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Chih-Chun Kung & Hualin Xie & Tao Wu & Shih-Chih Chen, 2014. "Biofuel for Energy Security: An Examination on Pyrolysis Systems with Emissions from Fertilizer and Land-Use Change," Sustainability, MDPI, vol. 6(2), pages 1-18, January.
    19. Yang, Qing & Han, Fei & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2016. "Greenhouse gas emissions of a biomass-based pyrolysis plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1580-1590.
    20. Yaming Zhao & Xiangjun Wang & Guangwei Yao & Zhizhong Lin & Laiyuan Xu & Yunli Jiang & Zewen Jin & Shengdao Shan & Lifeng Ping, 2022. "Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality," Sustainability, MDPI, vol. 14(16), pages 1-11, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:158:y:2015:i:c:p:61-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.