IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v245y2021ics0378377420321557.html
   My bibliography  Save this article

Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation

Author

Listed:
  • Wang, Yadong
  • Liu, Chun
  • Cui, Pengfei
  • Su, Derong

Abstract

Water shortage is the most critical constraint for alfalfa (Medicago sativa L.) hay production in the arid areas of Northwest China. In this study, we evaluated the effectiveness of partial root-zone drying (PRD) with subsurface drip irrigation (SDI) for alfalfa and compared it with conventional subsurface drip irrigation (CI). Field plot tests were conducted in 2017 and 2018 with three irrigation treatments under partial root-zone drying SDI system. Conventional SDI systems were used as the control. The irrigation quotas were 10 mm, 20 mm, and 30 mm per week for PRD1, PRD2, and PRD3, respectively, and that for CI was 30 mm per week. The number of drip irrigations for alfalfa in the whole growing stage were 13 and 19 in 2017 and 2018, respectively. There were three harvests in 2017 and four harvests in 2018. The results showed that the plant height of PRD was 0.4–11.57 cm higher than that of CI under the same irrigation regime. Moreover, PRD decreased the annual hay yield of one-year-old alfalfa, but increased the annual hay yield of two-year-old alfalfa, while in 2018 the annual hay yield increased by 832.27 kg ha−1 as compared to that of CI. Moreover, PRD has marked effect on alfalfa quality under insufficient amounts of water applied (PRD1), with significantly decreased acid detergent fiber by 7.81–27.02% and neutral detergent fiber by 0.25–15.23%, and increased crude protein by 0.59–12.68%, compared with CI. Crop water productivity (WPC) of one-year-old alfalfa under PRD3 in 2017 increased by 4.15–15.33% relative to CI, while WPC of two-year-old alfalfa under PRD2 in 2018 increased by 1.66–44.32% relative to CI. These results suggest that the proposed PRD could be a promising technique for alfalfa production in the arid area of Northwest China, with improved WPC and positive effect on quality characteristics.

Suggested Citation

  • Wang, Yadong & Liu, Chun & Cui, Pengfei & Su, Derong, 2021. "Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420321557
    DOI: 10.1016/j.agwat.2020.106608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420321557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palacios-Díaz, M.P. & Mendoza-Grimón, V. & Fernández-Vera, J.R. & Rodríguez-Rodríguez, F. & Tejedor-Junco, M.T. & Hernández-Moreno, J.M., 2009. "Subsurface drip irrigation and reclaimed water quality effects on phosphorus and salinity distribution and forage production," Agricultural Water Management, Elsevier, vol. 96(11), pages 1659-1666, November.
    2. Xiao, Yu & Zhang, Jing & Jia, Ting Ting & Pang, Xiao Pan & Guo, Zheng Gang, 2015. "Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicago sativa)," Agricultural Water Management, Elsevier, vol. 161(C), pages 147-154.
    3. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Kandelous, Maziar M. & Kamai, Tamir & Vrugt, Jasper A. & Šimůnek, Jiří & Hanson, Blaine & Hopmans, Jan W., 2012. "Evaluation of subsurface drip irrigation design and management parameters for alfalfa," Agricultural Water Management, Elsevier, vol. 109(C), pages 81-93.
    5. Mehrabi, Fatemeh & Sepaskhah, Ali Reza, 2019. "Partial root zone drying irrigation, planting methods and nitrogen fertilization influence on physiologic and agronomic parameters of winter wheat," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Kang, Shaozhong & Liang, Zongsuo & Pan, Yinhua & Shi, Peize & Zhang, Jianhua, 2000. "Alternate furrow irrigation for maize production in an arid area," Agricultural Water Management, Elsevier, vol. 45(3), pages 267-274, August.
    7. Kang, Shaozhong & Liang, Zongsuo & Hu, Wei & Zhang, Jianhua, 1998. "Water use efficiency of controlled alternate irrigation on root-divided maize plants," Agricultural Water Management, Elsevier, vol. 38(1), pages 69-76, October.
    8. Ayars, J. E. & Phene, C. J. & Hutmacher, R. B. & Davis, K. R. & Schoneman, R. A. & Vail, S. S. & Mead, R. M., 1999. "Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory," Agricultural Water Management, Elsevier, vol. 42(1), pages 1-27, September.
    9. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    10. Abrisqueta, J.M. & Mounzer, O. & Álvarez, S. & Conejero, W. & Garci­a-Orellana, Y. & Tapia, L.M. & Vera, J. & Abrisqueta, I. & Ruiz-Sánchez, M.C., 2008. "Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation," Agricultural Water Management, Elsevier, vol. 95(8), pages 959-967, August.
    11. Hanson, Blaine & Putnam, Dan & Snyder, Richard, 2007. "Deficit irrigation of alfalfa as a strategy for providing water for water-short areas," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 73-80, October.
    12. Yan Li & Derong Su, 2017. "Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    13. Zhang, Qiang & Wu, Shen & Chen, Chu & Shu, Liang-Zuo & Zhou, Xiu-Jie & Zhu, Sheng-Nan, 2014. "Regulation of nitrogen forms on growth of eggplant under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 142(C), pages 56-65.
    14. Gencoglan, Cafer & Altunbey, Hasibe & Gencoglan, Serpil, 2006. "Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation," Agricultural Water Management, Elsevier, vol. 84(3), pages 274-280, August.
    15. Warnke, Adam H. & Ruhland, Christopher T., 2016. "The effects of harvest regime, irrigation, and salinity on stem lignocellulose concentrations in alfalfa (Medicago sativa L.)," Agricultural Water Management, Elsevier, vol. 176(C), pages 234-242.
    16. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2016. "Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 163(C), pages 146-158.
    17. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Hu, Xiaotao, 2006. "Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 41-52, July.
    18. Fouli, Y. & Duiker, S.W. & Fritton, D.D. & Hall, M.H. & Watson, J.E. & Johnson, D.H., 2012. "Double cropping effects on forage yield and the field water balance," Agricultural Water Management, Elsevier, vol. 115(C), pages 104-117.
    19. Cavero, Jose & Faci, Jose M. & Medina, Eva T. & Martínez-Cob, Antonio, 2017. "Alfalfa forage production under solid-set sprinkler irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 191(C), pages 184-192.
    20. Çolak, Yeşim Bozkurt & Yazar, Attila & Gönen, Engin & Eroğlu, E. Çağlar, 2018. "Yield and quality response of surface and subsurface drip-irrigated eggplant and comparison of net returns," Agricultural Water Management, Elsevier, vol. 206(C), pages 165-175.
    21. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Yan, Boyuan, 2008. "Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 659-668, June.
    22. Bai, Wen-Ming & Li, Ling-Hao, 2003. "Effect of irrigation methods and quota on root water uptake and biomass of alfalfa in the Wulanbuhe sandy region of China," Agricultural Water Management, Elsevier, vol. 62(2), pages 139-148, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eltarabily, Mohamed Galal & Mohamed, Abdelmoneim Zakaria & Begna, Sultan & Wang, Dong & Putnam, Daniel H. & Scudiero, Elia & Bali, Khaled M., 2024. "Simulated soil water distribution patterns and water use of Alfalfa under different subsurface drip irrigation depths," Agricultural Water Management, Elsevier, vol. 293(C).
    2. Yuan Qiu & Yamin Wang & Yaqiong Fan & Xinmei Hao & Sien Li & Shaozhong Kang, 2023. "Root, Yield, and Quality of Alfalfa Affected by Soil Salinity in Northwest China," Agriculture, MDPI, vol. 13(4), pages 1-17, March.
    3. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Machekposhti, Mabood Farhadi & Shahnazari, Ali & Yousefian, Mostafa & Ahmadi, Mirkhalegh Z. & Sarjaz, Mahmoud Raeini & Arabzadeh, Behrouz & Akbarzadeh, Ali & Leib, Brian G., 2023. "The effect of alternate partial root-zone drying and deficit irrigation on the yield, quality, and physiochemical parameters of milled rice," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    3. Xiao, Yu & Zhang, Jing & Jia, Ting Ting & Pang, Xiao Pan & Guo, Zheng Gang, 2015. "Effects of alternate furrow irrigation on the biomass and quality of alfalfa (Medicago sativa)," Agricultural Water Management, Elsevier, vol. 161(C), pages 147-154.
    4. Jia, Dianyong & Dai, Xinglong & Xie, Yuli & He, Mingrong, 2021. "Alternate furrow irrigation improves grain yield and nitrogen use efficiency in winter wheat," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    6. Liu, Minguo & Wang, Zikui & Mu, Le & Xu, Rui & Yang, Huimin, 2021. "Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China," Agricultural Water Management, Elsevier, vol. 248(C).
    7. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).
    8. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    10. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    12. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    13. Tang, Li-Song & Li, Yan & Zhang, Jianhua, 2010. "Partial rootzone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area," Agricultural Water Management, Elsevier, vol. 97(10), pages 1527-1533, October.
    14. Ayars, J.E. & Fulton, A. & Taylor, B., 2015. "Subsurface drip irrigation in California—Here to stay?," Agricultural Water Management, Elsevier, vol. 157(C), pages 39-47.
    15. Topak, Ramazan & Acar, Bilal & Uyanöz, Refik & Ceyhan, Ercan, 2016. "Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 176(C), pages 180-190.
    16. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    17. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    18. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Guizani, Monia & Dabbou, Samia & Maatallah, Samira & Montevecchi, Giuseppe & Hajlaoui, Hichem & Rezig, Mourad & Helal, Ahmed Noureddine & Kilani-Jaziri, Soumaya, 2019. "Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia," Agricultural Water Management, Elsevier, vol. 217(C), pages 81-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420321557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.