IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v245y2021ics0378377420322046.html
   My bibliography  Save this article

Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China

Author

Listed:
  • Wang, Linlin
  • Wu, Wenyong
  • Xiao, Juan
  • Huang, Qiannan
  • Hu, Yaqi

Abstract

Unreasonable layout of drip irrigation systems and inappropriate irrigation decision-making methods in orchards in water-scarce areas in Northern China result in low water use efficiency (WUE). In order to reveal the effect of drip irrigation mode on WUE of orchards and improve efficient use of water resources, this study used pear (Pyrus pyrifolia cv. Whangkeumbae) as a test material to conduct a two-year field irrigation experiment, considering the two factors of drip irrigation pipes layout and lower limit of soil moisture,five drip irrigation modes and a control treatment (CK) were set up. By measuring the soil moisture content, water consumption, yield and fruit quality, the effects of different drip irrigation modes on spatial coefficient of variation (CV) of soil moisture, pear tree growth and WUE were evaluated. The results showed that the CV and the soil moisture content showed a significant linear negative correlation (p < 0.05), and the resulting difference in soil water, aeration and heat had an effect on the development of fruit tree roots. Five drip irrigation modes significantly reduced the ET value of pear trees and improved WUE compared with CK (p < 0.05). Among them, the mode of subsurface drip irrigation with double lines under soil moisture lower limit of 60% the field capacity (FC) worked best. Considering only the soil moisture lower limit, compared with 80% FC and 60% FC, the WUE of 70% FC increased by 13.04%, 7.56–12.21% respectively. However, the irrigation mode of 60% FC soil moisture lower limit effectively improved the fruit quality (soluble solids, titratable acid). Considering the factors of drip irrigation pipes layout, subsurface drip irrigation significantly increased WUE by 34.39–35.35% compared with surface drip irrigation (p < 0.05), and increased WUE by 16.36–24.77% compared with ring drip irrigation. The WUE of pear tree and the CV showed a linear positive correlation. Considering all aspects, we concluded that the mode of the subsurface drip irrigation with double lines under soil moisture lower limit of 60% FC was the best irrigation mode in pear orchard. The research results provide a typical reference for further research on perennial fruit trees to improve WUE.

Suggested Citation

  • Wang, Linlin & Wu, Wenyong & Xiao, Juan & Huang, Qiannan & Hu, Yaqi, 2021. "Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China," Agricultural Water Management, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420322046
    DOI: 10.1016/j.agwat.2020.106660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420322046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    2. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Huang, Qiannan & Yan, Hua, 2019. "Quantifying moisture availability in soil profiles of cherry orchards under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 225(C).
    3. Reyes-Cabrera, Joel & Zotarelli, Lincoln & Dukes, Michael D. & Rowland, Diane L. & Sargent, Steven A., 2016. "Soil moisture distribution under drip irrigation and seepage for potato production," Agricultural Water Management, Elsevier, vol. 169(C), pages 183-192.
    4. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    5. Livellara, N. & Saavedra, F. & Salgado, E., 2011. "Plant based indicators for irrigation scheduling in young cherry trees," Agricultural Water Management, Elsevier, vol. 98(4), pages 684-690, February.
    6. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G, 2016. "Subsurface drip irrigation affects trunk diameter fluctuations in lemon trees, in comparison with surface drip irrigation," Agricultural Water Management, Elsevier, vol. 165(C), pages 11-21.
    7. García, J.M. & Hueso, A. & Gómez-del- Campo, M., 2020. "Deficit irrigation during the oil synthesis period affects olive oil quality in high-density orchards (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 230(C).
    8. Franco, J. A. & Abrisqueta, J. M. & Hernansaez, A. & Moreno, F., 2000. "Water balance in a young almond orchard under drip irrigation with water of low quality," Agricultural Water Management, Elsevier, vol. 43(1), pages 75-98, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Wu & Xuefang Feng & Xuemei Liu & Di Wu & Songmei Zai & Linbao Liu, 2024. "Effects of Burial Furrow Parameters on Soil Water Movement under Subsurface Stalk Composite Pipe Irrigation," Agriculture, MDPI, vol. 14(2), pages 1-17, February.
    2. Ruifeng Sun & Juanjuan Ma & Xihuan Sun & Lijian Zheng & Jiachang Guo, 2023. "Responses of the Leaf Water Physiology and Yield of Grapevine via Different Irrigation Strategies in Extremely Arid Areas," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    3. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    5. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    7. Jin Guo & Lijian Zheng & Juanjuan Ma & Xufeng Li & Ruixia Chen, 2023. "Meta-Analysis of the Effect of Subsurface Irrigation on Crop Yield and Water Productivity," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    8. do Amaral, Marcos Antonio Correa Matos & Coelho, Rubens Duarte & de Oliveira Costa, Jéfferson & de Sousa Pereira, Diego José & de Camargo, Antonio Pires, 2022. "Dripper clogging by soil particles entering lateral lines directly during irrigation network assembly in the field," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Zhang, Yuhao & Hou, Renjie & Fu, Qiang & Li, Tianxiao & Li, Mo & Cui, Song & Dong, Wencai, 2023. "Drip irrigation impacts on the root zone soil environment and enrichment characteristics of heavy metals in soybean," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Chengkun Wang & Nannan Zhang & Mingzhe Li & Li Li & Tiecheng Bai, 2022. "Pear Tree Growth Simulation and Soil Moisture Assessment Considering Pruning," Agriculture, MDPI, vol. 12(10), pages 1-26, October.
    11. Shah, Wasi Ul Hassan & Hao, Gang & Yasmeen, Rizwana & Yan, Hong & Shen, Jintao & Lu, Yuting, 2023. "Role of China's agricultural water policy reforms and production technology heterogeneity on agriculture water usage efficiency and total factor productivity change," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Coelho, Rubens Duarte & Almeida, Alex Nunes de & Costa, Jéfferson de Oliveira & Pereira, Diego José de Sousa, 2022. "Mobile drip irrigation (MDI): Clogging of high flow emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water," Agricultural Water Management, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    2. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Zhou, Yanqing & Gao, Xiaodong & Wang, Jiaxin & Robinson, Brett H. & Zhao, Xining, 2021. "Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    5. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    6. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    7. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    8. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    9. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    10. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    11. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).
    12. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    13. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    14. da Silva, Andre Luiz Biscaia Ribeiro & Dias, Henrique Boriolo & Gupta, Rishabh & Zotarelli, Lincoln & Asseng, Senthold & Dukes, Michael D. & Porter, Cheryl & Hoogenboom, Gerrit, 2024. "Assessing the impact of irrigation and nitrogen management on potato performance under varying climate in the state of Florida, USA," Agricultural Water Management, Elsevier, vol. 295(C).
    15. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    16. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    17. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    18. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    19. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    20. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420322046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.