IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v256y2021ics0378377421003279.html
   My bibliography  Save this article

Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: A 12-yr in-situ study in the Loess Plateau, China

Author

Listed:
  • Li, Haoyu
  • Zhang, Yuanhong
  • Zhang, Qi
  • Ahmad, Naeem
  • Liu, Pengzhao
  • Wang, Rui
  • Li, Jun
  • Wang, Xiaoli

Abstract

Water deficit and conventional production mode limited agriculture sustainable development on the Loess Plateau. Crop rotation and conservation tillage appears to serve as an effective strategy to optimize water resources distribution and utilization. From 2007–2019, a 12-yr in-situ experiment consisting of three cropping systems (winter wheat continuous cropping, WW; winter wheat-spring maize rotation, WM; spring maize continuous cropping, MM) and two tillage methods (conservation tillage, subsoiling, ST; conventional tillage, plowing, CT) were conducted in a semi-arid region, and grain yield, economic profit, water use, precipitation storage and loss, soil water balance were analyzed to explore the mechanism and potential of crop rotation and conservation tillage regulating soil water balance and increasing farmland productivity. Our results show that compared to WW, WM and MM significantly enhanced grain yield by 4358 and 8791 kg ha−1 in 2-yr rotation cycle, respectively. And ST increased grain yield after 3 cycles with 979 kg ha−1. WM and MM with ST significantly reduced precipitation loss (78 and 135 mm) during the fallow period, and increased WUE (6.5 and 10.8 kg ha−1 mm−1), compared to WW-CT. With the passage of time, soil water storage of WW and MM showed a decreasing trend in 100–200 and 0–100 cm layers compared to pre-experiment, with the rate of 18.1 and 13.6 mm per cycle. And ST could ease the downward trend, relative to CT. However, the WM-ST maintained soil water balance by regulating water use and precipitation storage, compared to the two continuous cropping systems. Additionally, correlation analysis showed that evapotranspiration was positive to soil water balance and we should consider crop water use when designing cropping system to prevent soil water deficit. Overall, the WM-ST achieved better soil water sustainability, on the basis of sacrificing grain yield partly (4646 kg ha−1 in 2-yr rotation cycle) compared to MM-ST, which perhaps more eco-friendly and sustainable agricultural technique to replace WW-CT in the Loess Plateau of China.

Suggested Citation

  • Li, Haoyu & Zhang, Yuanhong & Zhang, Qi & Ahmad, Naeem & Liu, Pengzhao & Wang, Rui & Li, Jun & Wang, Xiaoli, 2021. "Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: A 12-yr in-situ study in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003279
    DOI: 10.1016/j.agwat.2021.107062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Mingbin & Dang, Tinghui & Gallichand, Jacques & Goulet, Monique, 2003. "Effect of increased fertilizer applications to wheat crop on soil-water depletion in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 58(3), pages 267-278, February.
    2. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    3. Dianyuan Ding & Hao Feng & Ying Zhao & Wenzhao Liu & Haixin Chen & Jianqiang He, 2016. "Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China," Climatic Change, Springer, vol. 138(1), pages 157-171, September.
    4. Ma, Shangyu & Yu, Zhenwen & Shi, Yu & Gao, Zhiqiang & Luo, Lanping & Chu, Pengfei & Guo, Zengjiang, 2015. "Soil water use, grain yield and water use efficiency of winter wheat in a long-term study of tillage practices and supplemental irrigation on the North China Plain," Agricultural Water Management, Elsevier, vol. 150(C), pages 9-17.
    5. Zhang, Xudong & Li, Zhimin & Siddique, Kadambot H.M. & Shayakhmetova, Altyn & Jia, Zhikuan & Han, Qingfang, 2020. "Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Zhang, Yuanhong & Wang, Rui & Wang, Shulan & Ning, Fang & Wang, Hao & Wen, Pengfei & Li, Ao & Dong, Zhaoyang & Xu, Zonggui & Zhang, Yujiao & Li, Jun, 2019. "Effect of planting density on deep soil water and maize yield on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Zhang, Yujiao & Wang, Rui & Wang, Hao & Wang, Shulan & Wang, Xiaoli & Li, Jun, 2019. "Soil water use and crop yield increase under different long-term fertilization practices incorporated with two-year tillage rotations," Agricultural Water Management, Elsevier, vol. 221(C), pages 362-370.
    8. Karlen, D. L. & Hurley, E. & Andrews, S & Cambardella, C. & Meek, M. & Duffy, Michael & Mallarenio, A., 2006. "Crop Rotation Effects on Soil Quality at Three Northern Corn/Soybean Locations," Staff General Research Papers Archive 12580, Iowa State University, Department of Economics.
    9. Wang, Tongxin & Tang, Xuguang & Zheng, Chen & Gu, Qing & Wei, Jin & Ma, Mingguo, 2018. "Differences in ecosystem water-use efficiency among the typical croplands," Agricultural Water Management, Elsevier, vol. 209(C), pages 142-150.
    10. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    11. Jia, Yu-Hua & Shao, Ming-An, 2013. "Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 117(C), pages 33-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuanhong & Li, Haoyu & Sun, Yuanguang & Zhang, Qi & Liu, Pengzhao & Wang, Rui & Li, Jun, 2022. "Temporal stability analysis evaluates soil water sustainability of different cropping systems in a dryland agricultural ecosystem," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Roberto Mancinelli & Mohamed Allam & Verdiana Petroselli & Mariam Atait & Merima Jasarevic & Alessia Catalani & Sara Marinari & Emanuele Radicetti & Aftab Jamal & Zainul Abideen & Gabriele Chilosi, 2023. "Durum Wheat Production as Affected by Soil Tillage and Fertilization Management in a Mediterranean Environment," Agriculture, MDPI, vol. 13(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
    2. Lishu Wang & Haigang Guo & Lixuan Wang & Dongjuan Cheng, 2022. "Suitable Tillage Depth Promotes Maize Yields by Changing Soil Physical and Chemical Properties in A 3-Year Experiment in the North China Plain," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    3. Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Wang, Shulan & Wang, Hao & Zhang, Yuanhong & Wang, Rui & Zhang, Yujiao & Xu, Zonggui & Jia, Guangcan & Wang, Xiaoli & Li, Jun, 2018. "The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 376-384.
    5. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    6. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    7. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    8. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    10. Dong Guo & Chuanyong Chen & Baoyuan Zhou & Di Ma & William D. Batchelor & Xiao Han & Zaisong Ding & Mei Du & Ming Zhao & Ming Li & Wei Ma, 2022. "Drip Fertigation with Relatively Low Water and N Input Achieved Higher Grain Yield of Maize by Improving Pre- and Post-Silking Dry Matter Accumulation," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    11. Dan Wu & Wei Wei & Zongshan Li & Qindi Zhang, 2023. "Coupling Effects of Terracing and Vegetation on Soil Ecosystem Multifunctionality in the Loess Plateau, China," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    12. Tonggang Fu & Hongzhu Liang & Hui Gao & Jintong Liu, 2021. "The Taihang Mountain Region of North China is Experiencing A Significant Warming Trend," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    13. Li, Weiwei & Xiong, Li & Wang, Changjiang & Liao, Yuncheng & Wu, Wei, 2019. "Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi–humid areas," Agricultural Water Management, Elsevier, vol. 218(C), pages 211-221.
    14. Guangshuai Wang & Zhenjie Du & Huifeng Ning & Hao Liu & Sunusi Amin Abubakar & Yang Gao, 2021. "Changes in GHG Emissions Based on Irrigation Water Quality in Short-Term Incubated Agricultural Soil of the North China Plain," Agriculture, MDPI, vol. 11(12), pages 1-12, December.
    15. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    16. Wang, X.C. & Muhammad, T.N. & Hao, M.D. & Li, J., 2011. "Sustainable recovery of soil desiccation in semi-humid region on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 98(8), pages 1262-1270, May.
    17. Francis Azumah Chimsah & Liqun Cai & Jun Wu & Renzhi Zhang, 2020. "Outcomes of Long-Term Conservation Tillage Research in Northern China," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    18. Sawatdikarn Sanit, 2021. "Induction on Seed Germination and Seeedling Performances against Sunflower (Helainthus annuus L.) and Castor bean (Ricinus communis L.) as influenced by Different Water Stress Treatments," International Journal of Sciences, Office ijSciences, vol. 10(02), pages 41-50, February.
    19. Zhang, Yuanhong & Li, Haoyu & Sun, Yuanguang & Zhang, Qi & Liu, Pengzhao & Wang, Rui & Li, Jun, 2022. "Temporal stability analysis evaluates soil water sustainability of different cropping systems in a dryland agricultural ecosystem," Agricultural Water Management, Elsevier, vol. 272(C).
    20. Huang, Yilong & Chen, Liding & Fu, Bojie & Huang, Zhilin & Gong, Jie, 2005. "The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects," Agricultural Water Management, Elsevier, vol. 72(3), pages 209-222, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.