IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v223y2019ic54.html
   My bibliography  Save this article

Effect of planting density on deep soil water and maize yield on the Loess Plateau of China

Author

Listed:
  • Zhang, Yuanhong
  • Wang, Rui
  • Wang, Shulan
  • Ning, Fang
  • Wang, Hao
  • Wen, Pengfei
  • Li, Ao
  • Dong, Zhaoyang
  • Xu, Zonggui
  • Zhang, Yujiao
  • Li, Jun

Abstract

Dryland farmers tend to increase maize plant density with drought and density stress tolerance hybrids to achieve higher grain yield in recent years. However, could this strategy improve yield or water use efficiency (WUE) and be sustainable without decreasing deep soil water in drought-prone environments is not clear. A 4-year of successive field study was carried out with three different drought and density stress tolerance maize hybrids and four plant density arrange from 52,500 to 97,500 plants ha−1. To quantify the responses of grain yield formation and WUE to increasing plant density under various rainfall condition and evaluate the effect on deep soil water balance. Results showed that using of drought and density stress tolerance hybrids could achieve higher grain yield and WUE with higher plant density in normal years, which was associated with an increase in kernels number per square meter. But in dry year, as fewer water was available during reproductive growth stage in higher plant density, grain yield and WUE was gradually decreased with increasing plant density, especially in density stress sensitive hybrid. Soil water balance at 0 to 200 cm depth was not broken by high plant density from the perspective of same water availability at sowing in each year, despite of the lower soil water content during maize growth stage. However, high plant density tended to consume more deep soil water which was hardly been replenished by precipitation, especially in high density tolerance hybrids. Hence, higher density that exceed 60000 plants ha−1 couple with drought and density stress tolerance hybrids is a potential way to improve maize production in dryland, but it increases the risk of deep soil desiccation.

Suggested Citation

  • Zhang, Yuanhong & Wang, Rui & Wang, Shulan & Ning, Fang & Wang, Hao & Wen, Pengfei & Li, Ao & Dong, Zhaoyang & Xu, Zonggui & Zhang, Yujiao & Li, Jun, 2019. "Effect of planting density on deep soil water and maize yield on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:223:y:2019:i:c:54
    DOI: 10.1016/j.agwat.2019.05.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741831998X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.05.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Xinmao & Sun, Dongbao & Wang, Qingsuo, 2016. "Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 171(C), pages 40-48.
    2. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    3. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    4. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingtao Qin & Xiaosen Wang & Xichao Fan & Mingliang Jiang & Mouchao Lv, 2022. "Whether Increasing Maize Planting Density Increases the Total Water Use Depends on Soil Water in the 0–60 cm Soil Layer in the North China Plain," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    2. Lai, Zhenlin & Fan, Junliang & Yang, Rui & Xu, Xinyu & Liu, Lanjiao & Li, Sien & Zhang, Fucang & Li, Zhijun, 2022. "Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in northwest China," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Miodrag Tolimir & Branka Kresović & Katarina Gajić & Violeta Anđelković & Milan Brankov & Marijana Dugalić & Boško Gajić, 2024. "Integrated effect of irrigation rate and plant density on yield, yield components and water use efficiency of maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(8), pages 475-482.
    4. Dušan Dunđerski & Goran Jaćimović & Jovan Crnobarac & Jelena Visković & Dragana Latković, 2023. "Using Digital Image Analysis to Estimate Corn Ear Traits in Agrotechnical Field Trials: The Case with Harvest Residues and Fertilization Regimes," Agriculture, MDPI, vol. 13(3), pages 1-18, March.
    5. repec:caa:jnlpse:v:preprint:id:155-2024-pse is not listed on IDEAS
    6. Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Guoqiang Zhang & Dongping Shen & Bo Ming & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2022. "Optimizing Planting Density to Increase Maize Yield and Water Use Efficiency and Economic Return in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(9), pages 1-12, August.
    8. Li, Haoyu & Zhang, Yuanhong & Zhang, Qi & Ahmad, Naeem & Liu, Pengzhao & Wang, Rui & Li, Jun & Wang, Xiaoli, 2021. "Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: A 12-yr in-situ study in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    3. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Chauhdary, Junaid Nawaz & Li, Hong & Akbar, Nadeem & Javaid, Maria & Rizwan, Muhammad & Akhlaq, Muhammad, 2024. "Evaluating corn production under different plant spacings through integrated modeling approach and simulating its future response under climate change scenarios," Agricultural Water Management, Elsevier, vol. 293(C).
    5. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    6. Gu, Xiaobo & Cai, Huanjie & Fang, Heng & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2021. "Soil hydro-thermal characteristics, maize yield and water use efficiency as affected by different biodegradable film mulching patterns in a rain-fed semi-arid area of China," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Zhang, Shibo & Zhang, Guixin & Xia, Zhenqing & Wu, Mengke & Bai, Jingxuan & Lu, Haidong, 2022. "Optimizing plastic mulching improves the growth and increases grain yield and water use efficiency of spring maize in dryland of the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 271(C).
    8. Chen, Zhijun & Sun, Shijun & Zhu, Zhenchuang & Jiang, Hao & Zhang, Xudong, 2019. "Assessing the effects of plant density and plastic film mulch on maize evaporation and transpiration using dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 225(C).
    9. Zhang, Xudong & Li, Zhimin & Siddique, Kadambot H.M. & Shayakhmetova, Altyn & Jia, Zhikuan & Han, Qingfang, 2020. "Increasing maize production and preventing water deficits in semi-arid areas: A study matching fertilization with regional precipitation under mulch planting," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Chen, Zhijun & Sun, Shijun & Zhu, Zhenchuang & Chi, Daocai & Huang, Guanhua, 2023. "Modeling maize water consumption and growth under plastic film mulch using an agro–hydrological model: Searching for the optimal plant density in different hydrological years," Agricultural Water Management, Elsevier, vol. 276(C).
    11. Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
    12. Kashif AKHTAR & Weiyu WANG & Ahmad KHAN & Guangxin REN & Muhammad Zahir AFRIDI & Yongzhong FENG & Gaihe YANG, 2018. "Wheat straw mulching with fertilizer nitrogen: An approach for improving soil water storage and maize crop productivity," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(7), pages 330-337.
    13. Li, Yue & Chen, Hao & Feng, Hao & Dong, Qin’ge & Wu, Wenjie & Zou, Yufeng & Chau, Henry Wai & Siddique, Kadambot H.M., 2020. "Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 233(C).
    14. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Yang, Jian & Mao, Xiaomin & Wang, Kai & Yang, Weicai, 2018. "The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 232-245.
    16. Duan, Chenxiao & Chen, Jifei & Li, Jiabei & Su, Shunshun & Lei, Qi & Feng, Hao & Wu, Shufang & Zhang, Tibin & Siddique, Kadambot H.M. & Zou, Yufeng, 2022. "Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China," Agricultural Water Management, Elsevier, vol. 259(C).
    17. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    18. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    20. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:223:y:2019:i:c:54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.