IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421002572.html
   My bibliography  Save this article

Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity

Author

Listed:
  • Wang, Jiangtao
  • Du, Gangfeng
  • Tian, Jingshan
  • Jiang, Chuangdao
  • Zhang, Yali
  • Zhang, Wangfeng

Abstract

The morphological characteristics of crop roots, especially the plasticity of fine roots, are directly related to the crop’s ability to obtain soil water. Mulched drip irrigation can effectively regulate soil water distribution to achieve high cotton yield with reduced water consumption. In the previous study, from the perspective of root-shoot coordination, we found that mulched drip irrigation reduced the growth redundancy of roots and improved the root productivity of cotton, thus achieving the goal of water-saving and increased yield. However, it is unclear if and how mulched drip irrigation enhances absorptive capacity of roots via regulating dry and wet soil areas and optimizing fine root morphology and distribution compared with traditional flood irrigation. To achieve this, the effects of fine root plasticity on the absorptive capacity of roots were studied in a two-year field experiment. Mulched drip irrigation (conventional drip irrigation and excessive drip irrigation) and traditional flood irrigation (reduced flood irrigation and conventional flood irrigation) were used, and soil water distribution and root distribution were determined. The results showed that compared with traditional flood irrigation, mulched drip irrigation significantly increased the soil water content (SWC) in the 0–60 cm soil layer and reduced the fluctuation amplitude of SWC at the flowering and boll stage of cotton. Mulched drip irrigation formed different dry and wet areas in the root zone, i.e., the SWC was higher in the shallow layer (0–40 cm) at 0–20 cm on both sides of the drip line, and most of the cotton roots were in the wet area. The higher SWC increased the distribution of fine roots in this area and shaped the shallow fine root system, which enhanced the cotton plant’s ability to absorb soil water. Statistical analysis showed that the higher fine root biomass in the 0–40 cm soil layer at the late full boll stage of cotton under mulched drip irrigation was beneficial to increase aboveground biomass, thus increasing total bolls and seed cotton yield. However, compared with the irrigation amount of field production (390 mm), an excessive amount of irrigation (600 mm) reduced the seed cotton yield of mulched drip irrigation, resulting in the decrease of irrigation water use efficiency (IWUE). Therefore, mulched drip irrigation optimizes the distribution of fine roots and enhances water uptake by effectively regulating the water–root relationship, and thus improves seed cotton yield and IWUE.

Suggested Citation

  • Wang, Jiangtao & Du, Gangfeng & Tian, Jingshan & Jiang, Chuangdao & Zhang, Yali & Zhang, Wangfeng, 2021. "Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002572
    DOI: 10.1016/j.agwat.2021.106992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    2. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    3. Wang, Jiangtao & Du, Gangfeng & Tian, Jingshan & Zhang, Yali & Jiang, Chuangdao & Zhang, Wangfeng, 2020. "Effect of irrigation methods on root growth, root-shoot ratio and yield components of cotton by regulating the growth redundancy of root and shoot," Agricultural Water Management, Elsevier, vol. 234(C).
    4. Passioura, J. B., 1983. "Roots and drought resistance," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 265-280, September.
    5. Ibragimov, Nazirbay & Evett, Steven R. & Esanbekov, Yusupbek & Kamilov, Bakhtiyor S. & Mirzaev, Lutfullo & Lamers, John P.A., 2007. "Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 112-120, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Youliang & Feng, Shaoyuan & Wang, Fengxin & Feng, Ren & Nie, Wei, 2022. "Effects of drip discharge flux and soil wetted percentage on drip irrigated potato growth with film mulch," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Xin Zhang & Jianheng Zhang & Liwei Li & Yang Liu & Wenchao Zhen & Guiyan Wang, 2024. "Interaction Effects of Water and Nitrogen Practices on Wheat Yield, Water and Nitrogen Productivity under Drip Fertigation in Northern China," Agriculture, MDPI, vol. 14(9), pages 1-19, September.
    4. Geng, Qingling & Zhao, Yongkun & Sun, Shikun & He, Xiaohui & Wang, Dong & Wu, Dingrong & Tian, Zhihui, 2023. "Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 280(C).
    5. Luo, Chengwei & Wang, Ruoshui & Li, Chaonan & Zheng, Chenghao & Dou, Xiaoyu, 2023. "Photosynthetic characteristics, soil nutrients, and their interspecific competitions in an apple–soybean alley cropping system subjected to different drip fertilizer regimes on the Loess Plateau, Chin," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Bao, Lei & Zhang, Saifeng & Liang, Xinyu & Wang, Peizhou & Guo, Yawen & Sun, Qinghao & Zhou, Jianbin & Chen, Zhujun, 2023. "Intelligent drip fertigation increases water and nutrient use efficiency of watermelon in greenhouse without compromising the yield," Agricultural Water Management, Elsevier, vol. 282(C).
    7. Wang, Jingya & Li, Haiqiang & Cheng, Zhibo & Yin, Fating & Yang, Lei & Wang, Zhenhua, 2023. "Changes in soil bacterial and fungal community characteristics in response to long-term mulched drip irrigation in oasis agroecosystems," Agricultural Water Management, Elsevier, vol. 279(C).
    8. Gao, Jia & Zhang, Yingjun & Xu, Chenchen & Wang, Pu & Huang, Shoubing & Lv, Yanjie, 2024. "Enhancing spatial and temporal coordination of soil water and root growth to improve maize (Zea mays L.) yield," Agricultural Water Management, Elsevier, vol. 294(C).
    9. Qin Liao & Jiangxia Nie & Huilai Yin & Yongheng Luo & Chuanhai Shu & Qingyue Cheng & Hao Fu & Biao Li & Liangyu Li & Yongjian Sun & Zongkui Chen & Jun Ma & Na Li & Xiaoli Zhang & Zhiyuan Yang, 2024. "Can the Integration of Water and Fertilizer Promote the Sustainable Development of Rice Production in China?," Agriculture, MDPI, vol. 14(4), pages 1-18, April.
    10. Wang, Qunyan & Jia, Yifan & Pang, Zhongjun & Zhou, Jianbin & Scriber, Kevin Emmanuel & Liang, Bin & Chen, Zhujun, 2024. "Intelligent fertigation improves tomato yield and quality and water and nutrient use efficiency in solar greenhouse production," Agricultural Water Management, Elsevier, vol. 298(C).
    11. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    3. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Zhang, Bo & Iqbal, Hassan, 2018. "Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China," Agricultural Water Management, Elsevier, vol. 206(C), pages 1-10.
    5. Bai, Mengjie & Tao, Qibo & Zhang, Zuxin & Lang, Shuqing & Li, Junhui & Chen, Dali & Wang, Yanrong & Hu, Xiaowen, 2023. "Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    6. Giuseppe Salvatore Vitale & Aurelio Scavo & Silvia Zingale & Teresa Tuttolomondo & Carmelo Santonoceto & Gaetano Pandino & Sara Lombardo & Umberto Anastasi & Paolo Guarnaccia, 2024. "Agronomic Strategies for Sustainable Cotton Production: A Systematic Literature Review," Agriculture, MDPI, vol. 14(9), pages 1-20, September.
    7. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    8. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    9. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    10. Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.
    11. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.
    12. Hou, Xianghao & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Wenhui & Yan, Fulai & Guo, Jinjin & Xiao, Chao & Li, Yuepeng & Cheng, Houliang & Li, Zhijun, 2021. "Evaluation of cotton N nutrition status based on critical N dilution curve, N uptake and residual under different drip fertigation regimes in Southern Xinjiang of China," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Liu, Rui-Xian & Zhou, Zhi-Guo & Guo, Wen-Qi & Chen, Bing-Lin & Oosterhuis, Derrick M., 2008. "Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants," Agricultural Water Management, Elsevier, vol. 95(11), pages 1261-1270, November.
    14. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
    15. Kenjabaev, Shavkat & Forkutsa, I. & Bach, M. & Frede, H.-G., 2013. "Performance evaluation of the BUDGET model in simulating cotton and wheat yield and soil moisture in Fergana valley," International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building 159114, University of Giessen (JLU Giessen), Center for International Development and Environmental Research.
    16. Chen, Rui & Wang, Zhenhua & Dhital, Yam Prasad & Zhang, Xinyu, 2022. "A comparative evaluation of soil preferential flow of mulched drip irrigation cotton field in Xinjiang based on dyed image variability versus fractal characteristic parameter," Agricultural Water Management, Elsevier, vol. 269(C).
    17. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    18. Ping Wang & Zhenyong Zhao & Lei Wang & Changyan Tian, 2021. "Comparison of Efficiency-Enhanced Management and Conventional Management of Irrigation and Nitrogen Fertilization in Cotton Fields of Northwestern China," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    19. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    20. Yongwei Liu & Zhenzhen Yang & Changxiong Zhu & Baogang Zhang & Hongna Li, 2023. "The Eco-Agricultural Industrial Chain: The Meaning, Content and Practices," IJERPH, MDPI, vol. 20(4), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.