IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v158y2015icp99-111.html
   My bibliography  Save this article

Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils

Author

Listed:
  • Chen, Xiulong
  • Kang, Yaohu
  • Wan, Shuqin
  • Chu, Linlin
  • Li, Xiaobin

Abstract

This study investigated whether an improved drip irrigation method for reclaiming heavy coastal saline silt-soils could improve the growth of salt-sensitive plants threatened by soils with high salt contents and poor soil structures in Bohai Bay, China. Chinese rose (Rosa chinensis), an ornamental salt-sensitive plant, was chosen as the experiment material. The improved method used a non-saline root environment during the early stages of salt-leaching, a gravel–sand layer settled below the saline soil but above the water table and optimal soil moisture conditions. To determine the optimal soil moisture conditions, five soil matric potentials (SMPs) at 20cm depth at −5, −10, −15, −20 and −25kPa were studied. The results indicated that the mean soil electrical conductivity of the saturated paste extracts (ECe) and the sodium adsorption ratio (SAR) significantly declined in all five treatments. After three growing seasons, the highest desalinization ratios and SAR reductions reached 89% and 73%, respectively, compared with their initial values and these occurred in the roots of the seedlings exposed to the −5kPa treatment. The mean ECe and SAR values increased linearly as the SMP declined. The plant survival ratio was not affected by the SMP treatment in the first growing season, due to the non-saline root zone, but decreased significantly as the SMP threshold fell in the spring of the second year, and then remained stable in the following season. The highest survival ratio reached 97% for the −5kPa SMP treatment after three growing seasons. Stem diameter and plant height increased during three growing seasons and the largest increases occurred when the SMP was −5kPa in first year, −10kPa in second year and −20kPa in third year. The largest crown diameters were recorded in the −5kPa treatment plots in second year and −20kPa in third year. After three years of reclamation, our results showed that this improved method, which utilized a non-saline root environment during the early stages of salt-leaching, a gravel–sand layer below the saline soil and controlled the SMP threshold of −5kPa in the first year, −10kPa in second year and −20kPa in third year, can be used to reclaim coastal urban saline land for vegetation rehabilitation around Bohai Bay, China.

Suggested Citation

  • Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
  • Handle: RePEc:eee:agiwat:v:158:y:2015:i:c:p:99-111
    DOI: 10.1016/j.agwat.2015.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415001420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    2. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Zhang, Tibin, 2012. "Soil salinity management with drip irrigation and its effects on soil hydraulic properties in north China coastal saline soils," Agricultural Water Management, Elsevier, vol. 115(C), pages 10-19.
    3. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    4. Liu, Shuhui & Kang, Yaohu & Wan, Shuqin & Wang, Zhichun & Liang, Zhengwei & Sun, Xiaojing, 2011. "Water and salt regulation and its effects on Leymus chinensis growth under drip irrigation in saline-sodic soils of the Songnen Plain," Agricultural Water Management, Elsevier, vol. 98(9), pages 1469-1476, July.
    5. Manjunatha, M. V. & Oosterbaan, R. J. & Gupta, S. K. & Rajkumar, H. & Jansen, H., 2004. "Performance of subsurface drains for reclaiming waterlogged saline lands under rolling topography in Tungabhadra irrigation project in India," Agricultural Water Management, Elsevier, vol. 69(1), pages 69-82, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Plaza, Blanca María & Soriano, Francisco & Jiménez-Becker, Silvia & Lao, María Teresa, 2016. "Nutritional responses of Cordyline fruticosa var. ‘Red Edge’ to fertigation with leachates vs. conventional fertigation: Chloride, nitrogen, phosphorus and sulphate," Agricultural Water Management, Elsevier, vol. 173(C), pages 61-66.
    2. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin, 2019. "Response of tall fescue to the reclamation of severely saline coastal soil using treated effluent in Bohai Bay," Agricultural Water Management, Elsevier, vol. 218(C), pages 203-210.
    3. Dong, Shide & Wang, Guangmei & Kang, Yaohu & Ma, Qian & Wan, Shuqin, 2022. "Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin & Xu, Jiachong, 2019. "Effect of the micro-sprinkler irrigation method with treated effluent on soil physical and chemical properties in sea reclamation land," Agricultural Water Management, Elsevier, vol. 213(C), pages 222-230.
    5. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2021. "Establishing an ecological forest system of salt-tolerant plants in heavily saline wasteland using the drip-irrigation reclamation method," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Xiuping Wang & Zhizhong Xue & Xuelin Lu & Yahui Liu & Guangming Liu & Zhe Wu, 2019. "Salt leaching of heavy coastal saline silty soil by controlling the soil matric potential," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 132-137.
    7. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Miao, Junxia & Li, Xiaobin, 2021. "Different mulching materials influence the reclamation of saline soil and growth of the Lycium barbarum L. under drip-irrigation in saline wasteland in northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    8. Zhang, Chen & Li, Xiaobin & Kang, Yaohu & Wang, Xunming, 2019. "Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils," Agricultural Water Management, Elsevier, vol. 218(C), pages 8-16.
    9. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin, 2020. "Management of sea reclamation land using drip irrigation with treated effluent and its effect on Rosa chinensis," Agricultural Water Management, Elsevier, vol. 228(C).
    10. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2020. "Prospects of using drip irrigation for ecological conservation and reclaiming highly saline soils at the edge of Yinchuan Plain," Agricultural Water Management, Elsevier, vol. 239(C).
    11. Ali Moro & Abraham Oduro & Bernard Fei Baffoe & Maxwell Dalaba, 2020. "Fuel Consumption for Various Dishes for a Wood Fueled and Charcoal Fueled Improved Stoves used in Rural Northern Ghana," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(2), pages 51-62, June.
    12. Hafiz Muhammad Bilal & Haseeb Islam & Muhammad Adnan & Rohoma Tahir & Rabia Zulfiqar & Muhammad Shakeeb Umer & Muhammad Mohsin kaleem, 2020. "Effect of Salinity Stress on Growth, Yield and Quality of Roses: A Review," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(1), pages 46-50, June.
    13. Li, Xiaobin & Wan, Shuqin & Kang, Yaohu & Chen, Xiulong & Chu, Linlin, 2016. "Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents," Agricultural Water Management, Elsevier, vol. 163(C), pages 180-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin & Guo, Liping, 2015. "Influence of mulches on urban vegetation construction in coastal saline land under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 158(C), pages 145-155.
    2. Yongwei Liu & Zhenzhen Yang & Changxiong Zhu & Baogang Zhang & Hongna Li, 2023. "The Eco-Agricultural Industrial Chain: The Meaning, Content and Practices," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
    3. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    4. Dong, Shide & Wang, Guangmei & Kang, Yaohu & Ma, Qian & Wan, Shuqin, 2022. "Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Li, Xiaobin & Kang, Yaohu & Wan, Shuqin & Chen, Xiulong & Liu, Shiping & Xu, Jiachong, 2016. "Response of a salt-sensitive plant to processes of soil reclamation in two saline–sodic, coastal soils using drip irrigation with saline water," Agricultural Water Management, Elsevier, vol. 164(P2), pages 223-234.
    6. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin & Xu, Jiachong, 2019. "Effect of the micro-sprinkler irrigation method with treated effluent on soil physical and chemical properties in sea reclamation land," Agricultural Water Management, Elsevier, vol. 213(C), pages 222-230.
    7. Li, Xiaobin & Wan, Shuqin & Kang, Yaohu & Chen, Xiulong & Chu, Linlin, 2016. "Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents," Agricultural Water Management, Elsevier, vol. 163(C), pages 180-189.
    8. Wang, Xiquan & Zhang, Hongyuan & Zhang, Zhizhong & Zhang, Chenping & Zhang, Kai & Pang, Huancheng & Bell, Stephen M. & Li, Yuyi & Chen, Ji, 2023. "Reinforced soil salinization with distance along the river: A case study of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 279(C).
    9. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    10. Li, Xiaobin & Kang, Yaohu, 2020. "Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Zhang, Chen & Li, Xiaobin & Kang, Yaohu & Wang, Xunming, 2019. "Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils," Agricultural Water Management, Elsevier, vol. 218(C), pages 8-16.
    12. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Zhang, Tibin, 2012. "Soil salinity management with drip irrigation and its effects on soil hydraulic properties in north China coastal saline soils," Agricultural Water Management, Elsevier, vol. 115(C), pages 10-19.
    13. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2020. "Prospects of using drip irrigation for ecological conservation and reclaiming highly saline soils at the edge of Yinchuan Plain," Agricultural Water Management, Elsevier, vol. 239(C).
    14. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin, 2015. "Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 153(C), pages 1-8.
    15. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    16. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    17. Janiquelle da Silva Rabelo & Marcelo de Almeida Guimaraes & Valsergio Barros da Silva & Raimundo Nonato Távora Costa & Hozano de Souza Lemos Neto & Rosilene Oliveira Mesquita, 2020. "Irrigation Depth and Carnauba (Copernicia prunifera) Straw Increase Water Use Efficiency in the Cherry Tomato in a Semi-Arid Region," Journal of Agricultural Studies, Macrothink Institute, vol. 8(4), pages 629-650, December.
    18. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    19. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Zhou, Beibei & Liang, Chaofan & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Yang, Lu & Duan, Manli & Wang, Xingpeng, 2022. "Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:158:y:2015:i:c:p:99-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.