IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420308544.html
   My bibliography  Save this article

Ameliorants and salt tolerant varieties improve rice-wheat production in soils undergoing sodification with alkali water irrigation in Indo–Gangetic Plains of India

Author

Listed:
  • Sheoran, Parvender
  • Basak, Nirmalendu
  • Kumar, Ashwani
  • Yadav, R.K.
  • Singh, Randhir
  • Sharma, Raman
  • Kumar, Satyendra
  • Singh, Ranjay K.
  • Sharma, P.C.

Abstract

This work evaluates the combine efficacy of chemical (gypsum, Gyp) and/or organic (pressmud, PM) amendments with salt-tolerant varieties (STVs) for ameliorating the deleterious effects of bicarbonate dominated residual alkalinity in irrigation water (RSCiw) on changes in soil properties, plant adaptation mechanisms and crop performance of rice-wheat system (RWS) in Trans Indo-Gangetic Plains. Continuous irrigation with high RSCiw gradually increased the soil pH and exchangeable sodium percentage (ESP) and reduced rice and wheat productivity by 16 and 14%, respectively. Use of Gyp and PM ameliorated RSCiw improved physiological traits of both crops under stress conditions through significant improvement in relative water content (RWC, 6 and 10%); photosynthetic efficiency (Pn, 40 and 36 %); stomatal conductance (gS, 46 and 52%); transpiration rate (E, 72 and 45%); chlorophyll fluorescence (Fv/Fm, 13 and 12%); photon quantum yield (YII, 12 and 6%) and reduced membrane injury index (MII, 23 and 17%) and ionic concentration of Na+/K+ in shoot (48 and 37%) and root (45 and 37%). Highest rice (3.42 t ha−1) and wheat (4.30 t ha−1) yields were realized with Gyp + PM ameliorated RSCiw elucidating ∼25% yield advantage compared to unamended control. With increased RSCiw, STVs of aromatic rice (CSR 30 Basmati) and wheat (KRL 210) exhibited better performance owing to lesser yield reduction (12 and 11%) compared to traditional rice (PB 1121; 18%) and wheat (HD 2967; 16%) varieties. This study suggests that growing of STVs with Gyp + PM ameliorated RSC waters can mitigate adverse effects of RSCiw on soil health, improve agro-physiological adaptation and sustain the productivity of RWS. Field applicability of PM as soil ameliorant can help to address its safer disposal vis-a-vis potential alternative to gypsum in long-run. These results can be extended to larger areas undergoing high RSCiw induced soil sodification, further mitigating land and environment degradation in salt affected areas of India and similar agro-ecosystems.

Suggested Citation

  • Sheoran, Parvender & Basak, Nirmalendu & Kumar, Ashwani & Yadav, R.K. & Singh, Randhir & Sharma, Raman & Kumar, Satyendra & Singh, Ranjay K. & Sharma, P.C., 2021. "Ameliorants and salt tolerant varieties improve rice-wheat production in soils undergoing sodification with alkali water irrigation in Indo–Gangetic Plains of India," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420308544
    DOI: 10.1016/j.agwat.2020.106492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420308544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Qadir & E. Quillérou & V. Nangia & G. Murtaza & M. Singh & R.J. Thomas & P. Drechsel & A.D. Noble, 2014. "Economics of salt‐induced land degradation and restoration," Natural Resources Forum, Blackwell Publishing, vol. 0(4), pages 282-295, November.
    2. Chaganti, Vijayasatya N. & Crohn, David M. & Šimůnek, Jirka, 2015. "Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water," Agricultural Water Management, Elsevier, vol. 158(C), pages 255-265.
    3. Minhas, P.S. & Qadir, Manzoor & Yadav, R.K., 2019. "Groundwater irrigation induced soil sodification and response options," Agricultural Water Management, Elsevier, vol. 215(C), pages 74-85.
    4. M. Qadir & E. Quillérou & V. Nangia & G. Murtaza & M. Singh & R.J. Thomas & P. Drechsel & A.D. Noble, 2014. "Economics of salt‐induced land degradation and restoration," Natural Resources Forum, Blackwell Publishing, vol. 0(4), pages 282-295, November.
    5. Koo, J. W. & Edling, R. J. & Taylor, V., 1990. "A laboratory reclamation study for sodic soils used for rice production," Agricultural Water Management, Elsevier, vol. 18(3), pages 243-252, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parvender Sheoran & Arvind Kumar & Raman Sharma & Kailash Prajapat & Ashwani Kumar & Arijit Barman & R. Raju & Satyendra Kumar & Yousuf Jaffer Dar & Ranjay K. Singh & Satish Kumar Sanwal & Rajender Ku, 2021. "Quantitative Dissection of Salt Tolerance for Sustainable Wheat Production in Sodic Agro-Ecosystems through Farmers’ Participatory Approach: An Indian Experience," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    2. Danni Han & Chao Chen & Fan Wang & Wenping Li & Hao Peng & Qiu Jin & Bo Bi & Hiba Shaghaleh & Yousef Alhaj Hamoud, 2023. "Effects of Subsurface Pipe Drainage Spacing on Soil Salinity Movement in Jiangsu Coastal Reclamation Area," Sustainability, MDPI, vol. 15(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Changji & Song, Jingru & Wu, Qiang & Shen, Xiaojun & Hu, Yawei & Hu, Caihong & Li, Wenhao & Wang, Zhenhua, 2023. "Effects of applying river sediment with irrigation water on salinity leaching during wheat-maize rotation in the Yellow River Delta," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Xia An & Qin Liu & Feixiang Pan & Yu Yao & Xiahong Luo & Changli Chen & Tingting Liu & Lina Zou & Weidong Wang & Jinwang Wang & Xing Liu, 2023. "Research Advances in the Impacts of Biochar on the Physicochemical Properties and Microbial Communities of Saline Soils," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    3. Aadhityaa Mohanavelu & Sujay Raghavendra Naganna & Nadhir Al-Ansari, 2021. "Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies," Agriculture, MDPI, vol. 11(10), pages 1-17, October.
    4. Corwin, D.L. & Scudiero, E. & Zaccaria, D., 2022. "Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation," Agricultural Water Management, Elsevier, vol. 269(C).
    5. van Straten, G. & de Vos, A.C. & Rozema, J. & Bruning, B. & van Bodegom, P.M., 2019. "An improved methodology to evaluate crop salt tolerance from field trials," Agricultural Water Management, Elsevier, vol. 213(C), pages 375-387.
    6. Ashenafi Worku Daba & Asad Sarwar Qureshi, 2021. "Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies," Land, MDPI, vol. 10(12), pages 1-21, December.
    7. Tunca, Mehmet Can & Saysel, Ali Kerem & Babaei, Masoud & Erpul, Günay, 2023. "A dynamic model for salinity and sodicity management on agricultural lands: Interactive simulation approach," Ecological Modelling, Elsevier, vol. 482(C).
    8. Hafiz Muhammad Bilal & Haseeb Islam & Muhammad Adnan & Rohoma Tahir & Rabia Zulfiqar & Muhammad Shakeeb Umer & Muhammad Mohsin kaleem, 2020. "Effect of Salinity Stress on Growth, Yield and Quality of Roses: A Review," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(1), pages 46-50, June.
    9. Aeggarchat Sirisankanan, 2023. "Natural circumstances and farm labor supply adjustment: the response of the farm labor supply to permanent and transitory natural events," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9935-9961, September.
    10. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    11. Yin Zhang & Qingfeng Miao & Ruiping Li & Minghai Sun & Xinmin Yang & Wei Wang & Yongping Huang & Weiying Feng, 2024. "Distribution and Variation of Soil Water and Salt before and after Autumn Irrigation," Land, MDPI, vol. 13(6), pages 1-18, May.
    12. Shiksha Chaurasia & Arvind Kumar & Amit Kumar Singh, 2022. "Comprehensive Evaluation of Morpho-Physiological and Ionic Traits in Wheat ( Triticum aestivum L.) Genotypes under Salinity Stress," Agriculture, MDPI, vol. 12(11), pages 1-15, October.
    13. Shih-Chi Lee & Yutaka Kitamura & Shu-Hsien Tsai & Chuan-Chi Chien & Chun-Shen Cheng & Chin-Cheng Hsieh, 2022. "Screening of Rhizosphere Microbes of Salt-Tolerant Plants and Developed Composite Materials of Biochar Micro-Coated Soil Beneficial Microorganisms," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    14. Yuan Qiu & Yamin Wang & Yaqiong Fan & Xinmei Hao & Sien Li & Shaozhong Kang, 2023. "Root, Yield, and Quality of Alfalfa Affected by Soil Salinity in Northwest China," Agriculture, MDPI, vol. 13(4), pages 1-17, March.
    15. Ashley Gorst & Ben Groom & Ali Dehlavi, 2015. "Crop productivity and adaptation to climate change in Pakistan," GRI Working Papers 189, Grantham Research Institute on Climate Change and the Environment.
    16. Ali Moro & Abraham Oduro & Bernard Fei Baffoe & Maxwell Dalaba, 2020. "Fuel Consumption for Various Dishes for a Wood Fueled and Charcoal Fueled Improved Stoves used in Rural Northern Ghana," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(2), pages 51-62, June.
    17. Mahrokh Farvardin & Morteza Taki & Shiva Gorjian & Edris Shabani & Julio C. Sosa-Savedra, 2024. "Assessing the Physical and Environmental Aspects of Greenhouse Cultivation: A Comprehensive Review of Conventional and Hydroponic Methods," Sustainability, MDPI, vol. 16(3), pages 1-34, February.
    18. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    19. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    20. Ghalia Saleem Aljeddani, 2022. "Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420308544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.