IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i3p228-d1572703.html
   My bibliography  Save this article

Seawater Tolerance of the Beach Bean Vigna marina (Burm.) Merrill in Comparison with Mung Bean ( Vigna radiata ) and Adzuki Bean ( Vigna angularis )

Author

Listed:
  • Andi Septiana

    (Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
    Faculty of Mathematics and Natural Science, Halu Oleo University, Kendari 93232, Indonesia)

  • Shiori P. Nakamura

    (Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan)

  • Riko F. Naomasa

    (Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan)

  • Hideo Yamasaki

    (Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan)

Abstract

Seawater intrusion into soils caused by global climate change and tsunami disasters is a significant factor contributing to soil salinization in coastal vegetation areas, posing a critical threat to agriculture and food security. This study aimed to evaluate the seawater tolerance of Vigna marina , a wild Vigna species, through comparative laboratory experiments with Vigna radiata (mung bean) and Vigna angularis (adzuki bean). Unlike V. radiata and V. angularis , the seeds of V. marina exhibited significant buoyancy in seawater, remaining afloat for at least 30 days. After this prolonged seawater incubation, V. marina seeds maintained a 100% germination rate, whereas V. radiata and V. angularis failed to germinate under the same conditions. The photosynthetic activity of V. marina seedlings, evaluated via the Fv/Fm parameter, remained stable even after seven days of seawater irrigation. In contrast, V. radiata and V. angularis perished under seawater irrigation. Furthermore, V. marina seedlings exhibited sustained growth under seawater irrigation, showing consistent increases in both fresh and dry weight. These findings confirm that V. marina possesses remarkable tolerance to seawater, a critical characteristic for cultivation in areas affected by seawater intrusion.

Suggested Citation

  • Andi Septiana & Shiori P. Nakamura & Riko F. Naomasa & Hideo Yamasaki, 2025. "Seawater Tolerance of the Beach Bean Vigna marina (Burm.) Merrill in Comparison with Mung Bean ( Vigna radiata ) and Adzuki Bean ( Vigna angularis )," Agriculture, MDPI, vol. 15(3), pages 1-11, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:228-:d:1572703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/3/228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/3/228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Qadir & E. Quillérou & V. Nangia & G. Murtaza & M. Singh & R.J. Thomas & P. Drechsel & A.D. Noble, 2014. "Economics of salt‐induced land degradation and restoration," Natural Resources Forum, Blackwell Publishing, vol. 0(4), pages 282-295, November.
    2. Mayur Patel & Divya Gupta & Amita Saini & Asha Kumari & Rishi Priya & Sanjib Kumar Panda, 2024. "Physiological Phenotyping and Biochemical Characterization of Mung Bean ( Vigna radiata L.) Genotypes for Salt and Drought Stress," Agriculture, MDPI, vol. 14(8), pages 1-17, August.
    3. M. Qadir & E. Quillérou & V. Nangia & G. Murtaza & M. Singh & R.J. Thomas & P. Drechsel & A.D. Noble, 2014. "Economics of salt‐induced land degradation and restoration," Natural Resources Forum, Blackwell Publishing, vol. 0(4), pages 282-295, November.
    4. McLeod, M.K. & Slavich, P.G. & Irhas, Y. & Moore, N. & Rachman, A. & Ali, N. & Iskandar, T. & Hunt, C. & Caniago, C., 2010. "Soil salinity in Aceh after the December 2004 Indian Ocean tsunami," Agricultural Water Management, Elsevier, vol. 97(5), pages 605-613, May.
    5. Helena HNILIČKOVÁ & František HNILIČKA & Jaroslava MARTINKOVÁ & Kamil KRAUS, 2017. "Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(8), pages 362-367.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corwin, D.L. & Scudiero, E. & Zaccaria, D., 2022. "Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation," Agricultural Water Management, Elsevier, vol. 269(C).
    2. van Straten, G. & de Vos, A.C. & Rozema, J. & Bruning, B. & van Bodegom, P.M., 2019. "An improved methodology to evaluate crop salt tolerance from field trials," Agricultural Water Management, Elsevier, vol. 213(C), pages 375-387.
    3. Ashenafi Worku Daba & Asad Sarwar Qureshi, 2021. "Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies," Land, MDPI, vol. 10(12), pages 1-21, December.
    4. Tunca, Mehmet Can & Saysel, Ali Kerem & Babaei, Masoud & Erpul, Günay, 2023. "A dynamic model for salinity and sodicity management on agricultural lands: Interactive simulation approach," Ecological Modelling, Elsevier, vol. 482(C).
    5. Hafiz Muhammad Bilal & Haseeb Islam & Muhammad Adnan & Rohoma Tahir & Rabia Zulfiqar & Muhammad Shakeeb Umer & Muhammad Mohsin kaleem, 2020. "Effect of Salinity Stress on Growth, Yield and Quality of Roses: A Review," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(1), pages 46-50, June.
    6. Aeggarchat Sirisankanan, 2023. "Natural circumstances and farm labor supply adjustment: the response of the farm labor supply to permanent and transitory natural events," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9935-9961, September.
    7. Sheoran, Parvender & Basak, Nirmalendu & Kumar, Ashwani & Yadav, R.K. & Singh, Randhir & Sharma, Raman & Kumar, Satyendra & Singh, Ranjay K. & Sharma, P.C., 2021. "Ameliorants and salt tolerant varieties improve rice-wheat production in soils undergoing sodification with alkali water irrigation in Indo–Gangetic Plains of India," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Yin Zhang & Qingfeng Miao & Ruiping Li & Minghai Sun & Xinmin Yang & Wei Wang & Yongping Huang & Weiying Feng, 2024. "Distribution and Variation of Soil Water and Salt before and after Autumn Irrigation," Land, MDPI, vol. 13(6), pages 1-18, May.
    9. Shiksha Chaurasia & Arvind Kumar & Amit Kumar Singh, 2022. "Comprehensive Evaluation of Morpho-Physiological and Ionic Traits in Wheat ( Triticum aestivum L.) Genotypes under Salinity Stress," Agriculture, MDPI, vol. 12(11), pages 1-15, October.
    10. Li Wang & Tiangui Lv & Hualin Xie & Xinmin Zhang & Yanwei Zhang & Junxing Cai & Yuanyuan Liu & Jiang Liu, 2024. "Assessing urban smart growth in China based on the sustainable development goals framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19627-19657, August.
    11. Song, Changji & Song, Jingru & Wu, Qiang & Shen, Xiaojun & Hu, Yawei & Hu, Caihong & Li, Wenhao & Wang, Zhenhua, 2023. "Effects of applying river sediment with irrigation water on salinity leaching during wheat-maize rotation in the Yellow River Delta," Agricultural Water Management, Elsevier, vol. 276(C).
    12. Xia An & Qin Liu & Feixiang Pan & Yu Yao & Xiahong Luo & Changli Chen & Tingting Liu & Lina Zou & Weidong Wang & Jinwang Wang & Xing Liu, 2023. "Research Advances in the Impacts of Biochar on the Physicochemical Properties and Microbial Communities of Saline Soils," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    13. Shih-Chi Lee & Yutaka Kitamura & Shu-Hsien Tsai & Chuan-Chi Chien & Chun-Shen Cheng & Chin-Cheng Hsieh, 2022. "Screening of Rhizosphere Microbes of Salt-Tolerant Plants and Developed Composite Materials of Biochar Micro-Coated Soil Beneficial Microorganisms," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    14. Yuan Qiu & Yamin Wang & Yaqiong Fan & Xinmei Hao & Sien Li & Shaozhong Kang, 2023. "Root, Yield, and Quality of Alfalfa Affected by Soil Salinity in Northwest China," Agriculture, MDPI, vol. 13(4), pages 1-17, March.
    15. Sheikh, Asjad Tariq & Chaudhary, Ashok Kumar & Mufti, Samaa & Davies, Stephen & Rola-Rubzen, Maria Fay, 2024. "Soil fertility in mixed crop-livestock farming systems of Punjab, Pakistan: The role of institutional factors and sustainable land management practices," Agricultural Systems, Elsevier, vol. 218(C).
    16. Ashley Gorst & Ben Groom & Ali Dehlavi, 2015. "Crop productivity and adaptation to climate change in Pakistan," GRI Working Papers 189, Grantham Research Institute on Climate Change and the Environment.
    17. Aadhityaa Mohanavelu & Sujay Raghavendra Naganna & Nadhir Al-Ansari, 2021. "Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies," Agriculture, MDPI, vol. 11(10), pages 1-17, October.
    18. Ali Moro & Abraham Oduro & Bernard Fei Baffoe & Maxwell Dalaba, 2020. "Fuel Consumption for Various Dishes for a Wood Fueled and Charcoal Fueled Improved Stoves used in Rural Northern Ghana," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(2), pages 51-62, June.
    19. Mahrokh Farvardin & Morteza Taki & Shiva Gorjian & Edris Shabani & Julio C. Sosa-Savedra, 2024. "Assessing the Physical and Environmental Aspects of Greenhouse Cultivation: A Comprehensive Review of Conventional and Hydroponic Methods," Sustainability, MDPI, vol. 16(3), pages 1-34, February.
    20. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:228-:d:1572703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.