IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13932-d1243376.html
   My bibliography  Save this article

Effects of Subsurface Pipe Drainage Spacing on Soil Salinity Movement in Jiangsu Coastal Reclamation Area

Author

Listed:
  • Danni Han

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Chao Chen

    (Jiangsu Coastal Development Group Co., Ltd., Nanjing 210036, China)

  • Fan Wang

    (Jiangsu Coastal Ecological Science and Technology Development Co., Ltd., Nanjing 210036, China)

  • Wenping Li

    (Jiangsu Coastal Ecological Science and Technology Development Co., Ltd., Nanjing 210036, China)

  • Hao Peng

    (Jiangsu Coastal Ecological Science and Technology Development Co., Ltd., Nanjing 210036, China)

  • Qiu Jin

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Bo Bi

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China)

  • Hiba Shaghaleh

    (College of Environment, Hohai University, Nanjing 210098, China)

  • Yousef Alhaj Hamoud

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract

The agricultural development of reclaimed coastal areas in Jiangsu Province is significantly hindered by high soil salinity and an inadequate irrigation and drainage infrastructure. Optimizing the layout of subsurface drainage systems has been identified as an effective means of reducing soil salinity, with the proper designation of engineering parameters being crucial. This study applied 12 treatments (T1–T12) consisting of four different spacings of subsurface drainage pipes (6 m, 11 m, 15 m, and no subsurface drainage pipes) and three observation wells at varying distances from the drainage outlet (5 m, 25 m, and 45 m). Results showed that all three subsurface pipe spacing treatments significantly reduced soil salinity compared to natural drainage, with a smaller subsurface pipe spacing treatment leading to better salt-reducing effects. The farther the distance from the measuring point to the drain, the higher the salinity. As the burial depth of the outlet decreased and spacing between the subsurface drainage pipes decreased, the salinization rate of the 0–60 cm soil layer was higher, while the salt accumulation in the 60–80 cm soil layer was more severe. Therefore, a subsurface drainage pipe spacing of 6 m and an outlet burial depth of 40 cm are recommended as more suitable choices to effectively control salt concentration in the soil. The research aimed to provide scientific reference data and technical support for the optimized design of subsurface drainage engineering parameters while promoting efficient desalination of saline-alkali areas worldwide.

Suggested Citation

  • Danni Han & Chao Chen & Fan Wang & Wenping Li & Hao Peng & Qiu Jin & Bo Bi & Hiba Shaghaleh & Yousef Alhaj Hamoud, 2023. "Effects of Subsurface Pipe Drainage Spacing on Soil Salinity Movement in Jiangsu Coastal Reclamation Area," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13932-:d:1243376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Yuhui Yang & Dongwei Li & Weixiong Huang & Xinguo Zhou & Zhaoyang Li & Xiaomei Dong & Xingpeng Wang, 2022. "Effects of Subsurface Drainage on Soil Salinity and Groundwater Table in Drip Irrigated Cotton Fields in Oasis Regions of Tarim Basin," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    3. Ayars, J.E. & Christen, E.W. & Hornbuckle, J.W., 2006. "Controlled drainage for improved water management in arid regions irrigated agriculture," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 128-139, November.
    4. Sheoran, Parvender & Basak, Nirmalendu & Kumar, Ashwani & Yadav, R.K. & Singh, Randhir & Sharma, Raman & Kumar, Satyendra & Singh, Ranjay K. & Sharma, P.C., 2021. "Ameliorants and salt tolerant varieties improve rice-wheat production in soils undergoing sodification with alkali water irrigation in Indo–Gangetic Plains of India," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Li Zhao & Tong Heng & Lili Yang & Xuan Xu & Yue Feng, 2021. "Study on the Farmland Improvement Effect of Drainage Measures under Film Mulch with Drip Irrigation in Saline–Alkali Land in Arid Areas," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yi & Hu, Yue & Wei, Chenchen & Zeng, Wenzhi & Huang, Jiesheng & Ao, Chang, 2024. "Synergistic regulation of irrigation and drainage based on crop salt tolerance and leaching threshold," Agricultural Water Management, Elsevier, vol. 292(C).
    2. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    3. Wang, Yayu & Xiao, Yang & Puig-Bargués, Jaume & Zhou, Bo & Liu, Zeyuan & Muhammad, Tahir & Liang, Hongbang & Maitusong, Memetmin & Wang, Zhenhua & Li, Yunkai, 2023. "Assessment of water quality ions in brackish water on drip irrigation system performance applied in saline areas," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Litskas, V.D. & Aschonitis, V.G. & Lekakis, E.H. & Antonopoulos, V.Z., 2014. "Effects of land use and irrigation practices on Ca, Mg, K, Na loads in rice-based agricultural systems," Agricultural Water Management, Elsevier, vol. 132(C), pages 30-36.
    7. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    8. Abdullah Darzi-Naftchali & Henk Ritzema, 2018. "Integrating Irrigation and Drainage Management to Sustain Agriculture in Northern Iran," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    9. Negm, L.M. & Youssef, M.A. & Chescheir, G.M. & Skaggs, R.W., 2016. "DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina," Agricultural Water Management, Elsevier, vol. 166(C), pages 86-100.
    10. Jiang, Donglin & Ao, Chang & Bailey, Ryan T. & Zeng, Wenzhi & Huang, Jiesheng, 2022. "Simulation of water and salt transport in the Kaidu River Irrigation District using the modified SWAT-Salt," Agricultural Water Management, Elsevier, vol. 272(C).
    11. Qiaonan Yang & Can Hu & Jie Li & Xiaokang Yi & Yichuan He & Jie Zhang & Zhilin Sun, 2021. "A Separation and Desalination Process for Farmland Saline-Alkaline Water," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    12. Gowing, J.W. & Rose, D.A. & Ghamarnia, H., 2009. "The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater," Agricultural Water Management, Elsevier, vol. 96(3), pages 517-524, March.
    13. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    14. Parvender Sheoran & Arvind Kumar & Raman Sharma & Kailash Prajapat & Ashwani Kumar & Arijit Barman & R. Raju & Satyendra Kumar & Yousuf Jaffer Dar & Ranjay K. Singh & Satish Kumar Sanwal & Rajender Ku, 2021. "Quantitative Dissection of Salt Tolerance for Sustainable Wheat Production in Sodic Agro-Ecosystems through Farmers’ Participatory Approach: An Indian Experience," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    15. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    16. Yuhui Yang & Dongwei Li & Weixiong Huang & Xinguo Zhou & Zhaoyang Li & Xiaomei Dong & Xingpeng Wang, 2022. "Effects of Subsurface Drainage on Soil Salinity and Groundwater Table in Drip Irrigated Cotton Fields in Oasis Regions of Tarim Basin," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    17. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    18. Che, Zheng & Wang, Jun & Li, Jiusheng, 2022. "Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Deichmann, Majken M. & Andersen, Mathias N. & Thomsen, Ingrid K. & Børgesen, Christen D., 2019. "Impacts of controlled drainage during winter on the physiology and yield of winter wheat in Denmark," Agricultural Water Management, Elsevier, vol. 216(C), pages 118-126.
    20. Tavakoli Kivi, Saman & Bailey, Ryan T., 2017. "Modeling sulfur cycling and sulfate reactive transport in an agricultural groundwater system," Agricultural Water Management, Elsevier, vol. 185(C), pages 78-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13932-:d:1243376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.