IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v222y2019icp254-264.html
   My bibliography  Save this article

Pyraclostrobin can mitigate salinity stress in tomato crop

Author

Listed:
  • Boari, Francesca
  • Cantore, Vito
  • Di Venere, Donato
  • Sergio, Lucrezia
  • Candido, Vincenzo
  • Schiattone, Maria Immacolata

Abstract

Processing tomato is a widespread crop in the Mediterranean area where often there are problems of high salinity of irrigation water with considerable harmful effects on yield. Pyraclostrobin is a strobilurin based fungicide (PBF) having a broad range of applications. Strobilurins are reported to have biostimulant effect on plant mitigating abiotic stress. Therefore, the objective of this work was to investigate the ability of PBF to improve gas exchange parameters, chlorophyll, activity of antioxidative enzymes as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), yield characteristics, and water use efficiency (WUE) of tomato under salinity.

Suggested Citation

  • Boari, Francesca & Cantore, Vito & Di Venere, Donato & Sergio, Lucrezia & Candido, Vincenzo & Schiattone, Maria Immacolata, 2019. "Pyraclostrobin can mitigate salinity stress in tomato crop," Agricultural Water Management, Elsevier, vol. 222(C), pages 254-264.
  • Handle: RePEc:eee:agiwat:v:222:y:2019:i:c:p:254-264
    DOI: 10.1016/j.agwat.2019.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419305141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
    2. Marcella Michela Giuliani & Eugenio Nardella & Anna Gagliardi & Giuseppe Gatta, 2017. "Deficit Irrigation and Partial Root-Zone Drying Techniques in Processing Tomato Cultivated under Mediterranean Climate Conditions," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    3. Boari, Francesca & Donadio, Antonio & Pace, Bernardo & Schiattone, Maria Immacolata & Cantore, Vito, 2016. "Kaolin improves salinity tolerance, water use efficiency and quality of tomato," Agricultural Water Management, Elsevier, vol. 167(C), pages 29-37.
    4. Reina-Sanchez, A. & Romero-Aranda, R. & Cuartero, J., 2005. "Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 54-66, September.
    5. Schiattone, M.I. & Candido, V. & Cantore, V. & Montesano, F.F. & Boari, F., 2017. "Water use and crop performance of two wild rocket genotypes under salinity conditions," Agricultural Water Management, Elsevier, vol. 194(C), pages 214-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Tarek A. Shalaby & Yousry Bayoumi & Yahya Eid & Heba Elbasiouny & Fathy Elbehiry & József Prokisch & Hassan El-Ramady & Wanting Ling, 2022. "Can Nanofertilizers Mitigate Multiple Environmental Stresses for Higher Crop Productivity?," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    3. Candido, Vincenzo & Boari, Francesca & Cantore, Vito & Castronuovo, Donato & Denora, Michele & Sergio, Lucrezia & Todorovic, Mladen & Schiattone, Maria Immacolata, 2023. "Interactive effect of water regime, nitrogen rate and biostimulant application on physiological and biochemical traits of wild rocket," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Schiattone, Maria Immacolata & Boari, Francesca & Cantore, Vito & Castronuovo, Donato & Denora, Michele & Di Venere, Donato & Perniola, Michele & Sergio, Lucrezia & Todorovic, Mladen & Candido, Vincen, 2023. "Effect of water regime, nitrogen level and biostimulants application on yield and quality traits of wild rocket [Diplotaxis tenuifolia (L.) DC.]," Agricultural Water Management, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Candido, Vincenzo & Boari, Francesca & Cantore, Vito & Castronuovo, Donato & Denora, Michele & Sergio, Lucrezia & Todorovic, Mladen & Schiattone, Maria Immacolata, 2023. "Interactive effect of water regime, nitrogen rate and biostimulant application on physiological and biochemical traits of wild rocket," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Schiattone, Maria Immacolata & Boari, Francesca & Cantore, Vito & Castronuovo, Donato & Denora, Michele & Di Venere, Donato & Perniola, Michele & Sergio, Lucrezia & Todorovic, Mladen & Candido, Vincen, 2023. "Effect of water regime, nitrogen level and biostimulants application on yield and quality traits of wild rocket [Diplotaxis tenuifolia (L.) DC.]," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Rosa Francaviglia & Claudia Di Bene, 2019. "Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy," Agriculture, MDPI, vol. 9(4), pages 1-14, April.
    4. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
    7. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    8. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Katsoulas, N. & Sapounas, A. & De Zwart, F. & Dieleman, J.A. & Stanghellini, C., 2015. "Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency," Agricultural Water Management, Elsevier, vol. 156(C), pages 90-99.
    11. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Douthe, Cyril & El Aou-ouad, Hanan & Ribas-Carbó, Miquel & Galmés, Jeroni, 2019. "Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Li, Hao & Hou, Xuemin & Bertin, Nadia & Ding, Risheng & Du, Taisheng, 2023. "Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    14. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    15. Riccardo Massantini & Emanuele Radicetti & Maria Teresa Frangipane & Enio Campiglia, 2021. "Quality of Tomato ( Solanum lycopersicum L.) Changes under Different Cover Crops, Soil Tillage and Nitrogen Fertilization Management," Agriculture, MDPI, vol. 11(2), pages 1-14, January.
    16. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    18. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    19. Ángela Engelmo Moriche & Ana Nieto Masot & Julián Mora Aliseda, 2021. "Territorial Analysis of the Survival of European Aid to Rural Tourism (Leader Method in SW Spain)," Land, MDPI, vol. 10(10), pages 1-24, September.
    20. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:222:y:2019:i:c:p:254-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.