IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v216y2019icp98-104.html
   My bibliography  Save this article

Alleviation of water deficit in Physalis angulata plants by nitric oxide exogenous donor

Author

Listed:
  • da Silva Leite, Romeu
  • do Nascimento, Marilza Neves
  • Tanan, Tamara Torres
  • Gonçalves Neto, Lourival Palmeira
  • da Silva Ramos, Cristiane Amaral
  • da Silva, Alismário Leite

Abstract

Exogenous application of nitric oxide (NO) may play an important role in drought-tolerant plants in large crops or underexploited species. Sodium nitroprusside (SNP, 0, 25, 50, 75 and 100 μM), an exogenous NO donor, was used in this study to evaluate the potential of NO in water deficit mitigation in Physalis angulata plants. This species is a genetic resource underexploited in Brazil, but that has uses in traditional medicine and potential for growing of small fruits. Gaseous exchanges, chlorophyll content, water relations, sugar accumulation and growth parameters were evaluated in this work. Despite water deficit influence on all variables, exogenous application of nitric oxide promoted attenuation of symptoms on photosynthetic performance, notably carbon assimilation, water use efficiency and chlorophyll content. Relative water content seems not to be influenced by exogenous supply of NO. While, direct relationship between sugars accumulation and leaf water potential promoted by exogenous NO was observed. Similarly, NO reversed and/or attenuated symptoms of water deficit on plant growth, especially plant height, dry matter accumulation and leaf area. Low concentrations of SNP have shown to mitigate negative effects of water deficit in Physalis angulata plants, improving photosynthetic rates, maintenance of leaf water potential and growth.

Suggested Citation

  • da Silva Leite, Romeu & do Nascimento, Marilza Neves & Tanan, Tamara Torres & Gonçalves Neto, Lourival Palmeira & da Silva Ramos, Cristiane Amaral & da Silva, Alismário Leite, 2019. "Alleviation of water deficit in Physalis angulata plants by nitric oxide exogenous donor," Agricultural Water Management, Elsevier, vol. 216(C), pages 98-104.
  • Handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:98-104
    DOI: 10.1016/j.agwat.2019.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418317670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pazzagli, Pietro T. & Weiner, Jacob & Liu, Fulai, 2016. "Effects of CO2 elevation and irrigation regimes on leaf gas exchange, plant water relations, and water use efficiency of two tomato cultivars," Agricultural Water Management, Elsevier, vol. 169(C), pages 26-33.
    2. Hussain, Mubshar & Farooq, Shahid & Hasan, Waseem & Ul-Allah, Sami & Tanveer, Mohsin & Farooq, Muhammad & Nawaz, Ahmad, 2018. "Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives," Agricultural Water Management, Elsevier, vol. 201(C), pages 152-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Ibrahim Bolat & Asuman Gundogdu Bakır & Kubra Korkmaz & Gastón Gutiérrez-Gamboa & Ozkan Kaya, 2022. "Silicon and Nitric Oxide Applications Allow Mitigation of Water Stress in Myrobalan 29C Rootstocks ( Prunus cerasifera Ehrh.)," Agriculture, MDPI, vol. 12(8), pages 1-13, August.
    3. Li, Li & Wang, Yaosheng & Liu, Fulai, 2021. "Alternate partial root-zone N-fertigation increases water use efficiency and N uptake of barley at elevated CO2," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Ahmad Sher & Muhammad Yasir Arfat & Sami Ul-Allah & Abdul Sattar & Muhammad Ijaz & Abdul Manaf & Abdul Qayyum & Ali Tan Kee Zuan & Omaima Nasif & Kristina Gasparovic, 2021. "Conservation tillage improves productivity of sunflower (Helianthus annuus L.) under reduced irrigation on sandy loam soil," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-9, December.
    5. Muhammad Adeel Ghafar & Nudrat Aisha Akram & Muhammad Hamzah Saleem & Jianyong Wang & Leonard Wijaya & Mohammed Nasser Alyemeni, 2021. "Ecotypic Morphological and Physio-Biochemical Responses of Two Differentially Adapted Forage Grasses, Cenchrus ciliaris L. and Cyperus arenarius Retz. to Drought Stress," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    6. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    7. Rashid, Muhammad Adil & Zhang, Xiying & Andersen, Mathias Neumann & Olesen, Jørgen Eivind, 2019. "Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China Plain?," Agricultural Water Management, Elsevier, vol. 213(C), pages 1-11.
    8. Miloš Krstić & Velimir Mladenov & Borislav Banjac & Brankica Babec & Dušan Dunđerski & Nemanja Ćuk & Sonja Gvozdenac & Sandra Cvejić & Siniša Jocić & Vladimir Miklič & Jelena Ovuka, 2023. "Can Modification of Sowing Date and Genotype Selection Reduce the Impact of Climate Change on Sunflower Seed Production?," Agriculture, MDPI, vol. 13(11), pages 1-19, November.
    9. Cai, Fu & Zhang, Yushu & Mi, Na & Ming, Huiqing & Zhang, Shujie & Zhang, Hui & Zhao, Xianli, 2020. "Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Salwinder Singh Dhaliwal & Vivek Sharma & Arvind Kumar Shukla & Rajeev Kumar Gupta & Vibha Verma & Manmeet Kaur & Sanjib Kumar Behera & Prabhjot Singh, 2023. "Residual Effect of Organic and Inorganic Fertilizers on Growth, Yield and Nutrient Uptake in Wheat under a Basmati Rice–Wheat Cropping System in North-Western India," Agriculture, MDPI, vol. 13(3), pages 1-17, February.
    11. Rizwan Yaseen & Omar Aziz & Muhammad Hamzah Saleem & Muhammad Riaz & Muhammad Zafar-ul-Hye & Muzammal Rehman & Shafaqat Ali & Muhammad Rizwan & Mohammed Nasser Alyemeni & Hamed A. El-Serehy & Fahad A., 2020. "Ameliorating the Drought Stress for Wheat Growth through Application of ACC-Deaminase Containing Rhizobacteria along with Biogas Slurry," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    12. Asma Haj Sghaier & Hussein Khaeim & Ákos Tarnawa & Gergő Péter Kovács & Csaba Gyuricza & Zoltán Kende, 2023. "Germination and Seedling Development Responses of Sunflower ( Helianthus annuus L.) Seeds to Temperature and Different Levels of Water Availability," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    13. Vittoria Giannini & Carmelo Maucieri & Teofilo Vamerali & Giuseppe Zanin & Stefano Schiavon & Davide Matteo Pettenella & Stefano Bona & Maurizio Borin, 2022. "Sunflower: From Cortuso’s Description (1585) to Current Agronomy, Uses and Perspectives," Agriculture, MDPI, vol. 12(12), pages 1-16, November.
    14. Bai, Mengjie & Tao, Qibo & Zhang, Zuxin & Lang, Shuqing & Li, Junhui & Chen, Dali & Wang, Yanrong & Hu, Xiaowen, 2023. "Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    15. Ved Parkash & Sukhbir Singh, 2020. "A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    16. Wei, Zhenhua & Du, Taisheng & Li, Xiangnan & Fang, Liang & Liu, Fulai, 2018. "Interactive effects of CO2 concentration elevation and nitrogen fertilization on water and nitrogen use efficiency of tomato grown under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 202(C), pages 174-182.
    17. Wei, Zhenhua & Abdelhakim, Lamis Osama Anwar & Fang, Liang & Peng, Xiaoying & Liu, Jie & Liu, Fulai, 2022. "Elevated CO2 effect on the response of stomatal control and water use efficiency in amaranth and maize plants to progressive drought stress," Agricultural Water Management, Elsevier, vol. 266(C).
    18. Wang, Feng & Xiao, Junfu & Ming, Bo & Xie, Ruizhi & Wang, Keru & Hou, Peng & Liu, Guangzhou & Zhang, Guoqiang & Chen, Jianglu & Liu, Wanmao & Yang, Yunshan & Qin, Anzhen & Li, Shaokun, 2021. "Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates," Agricultural Water Management, Elsevier, vol. 247(C).
    19. Zhang, Dalong & Jiao, Xiaocong & Du, Qingjie & Song, Xiaoming & Li, Jianming, 2018. "Reducing the excessive evaporative demand improved photosynthesis capacity at low costs of irrigation via regulating water driving force and moderating plant water stress of two tomato cultivars," Agricultural Water Management, Elsevier, vol. 199(C), pages 22-33.
    20. Li, Yibo & Song, He & Zhou, Li & Xu, Zhenzhu & Zhou, Guangsheng, 2019. "Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field," Agricultural Water Management, Elsevier, vol. 211(C), pages 190-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:98-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.