IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v211y2019icp190-201.html
   My bibliography  Save this article

Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field

Author

Listed:
  • Li, Yibo
  • Song, He
  • Zhou, Li
  • Xu, Zhenzhu
  • Zhou, Guangsheng

Abstract

Plant growth and photosynthesis in response to water status have been extensively investigated. However, elucidating the photosynthetic process and its indicators under a drought episode and rewatering across the entire leaf lifespan is often neglected. In this experiment, three water treatments were set during two growth seasons: a control treatment, moderate persistent drought (T1), and severe persistent drought (T2). Maize leaf chlorophyll fluorescence emission was analyzed to determine the regulative responses of the photosynthetic potentials and photosystem II (PSII) photochemistry process to drought and rewatering in situ. A severe drought episode during the peak vegetative growth stage resulted in decreases in chlorophyll content, the maximal efficiency of PSII photochemistry (Fv/Fm), and photochemical quenching, but increases in non-photochemical quenching and the yield for dissipation by downregulation. Rewatering only restored partial PSII functions in plants that had undergone historical drought episodes. An analysis of non-photochemical pathways of thermal dissipation indicates that regulative photoprotection of the photosystem apparatus may occur through heat dissipation when an effect of severe drought episode appeared on a young leaf; however, rewatering did not enhance photoprotection with leaf aging. Compared to the control treatment, the yield of T1 and T2 decreased by 25.1% and 27.1% in 2015, and 26.4% and 54.3% in 2016, respectively. The chlorophyll content was significantly and closely correlated with Fv/Fm (R = 0.65, P < 0.001) and the maximum versus minimum fluorescence yield in the dark-adapted state (Fm/Fo) (R = 0.72, P < 0.001). Additionally, the two parameters can be suggested to feasibly track chlorophyll content changes and the degree of leaf senescence in responses to a drought episode and its interaction with leaf aging: Fm/Fo and the relative limitation to photosynthesis (RLP). The current results may provide a profound insight into better understanding the underlying mechanism of photosynthetic potentials and photochemistry efficiency and photoprotection in response to drought episodes and rewatering over the entire leaf lifespan.

Suggested Citation

  • Li, Yibo & Song, He & Zhou, Li & Xu, Zhenzhu & Zhou, Guangsheng, 2019. "Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field," Agricultural Water Management, Elsevier, vol. 211(C), pages 190-201.
  • Handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:190-201
    DOI: 10.1016/j.agwat.2018.09.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418306747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hussain, Mubshar & Farooq, Shahid & Hasan, Waseem & Ul-Allah, Sami & Tanveer, Mohsin & Farooq, Muhammad & Nawaz, Ahmad, 2018. "Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives," Agricultural Water Management, Elsevier, vol. 201(C), pages 152-166.
    2. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    3. Sun, Caixia & Gao, Xiaoxiao & Chen, Xing & Fu, Jianqi & Zhang, Yulan, 2016. "Metabolic and growth responses of maize to successive drought and re-watering cycles," Agricultural Water Management, Elsevier, vol. 172(C), pages 62-73.
    4. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Theresia Sri Budiastuti & Djoko Purnomo & Bambang Pujiasmanto & Desy Setyaningrum, 2023. "Response of Maize Yield and Nutrient Uptake to Indigenous Organic Fertilizer from Corn Cobs," Agriculture, MDPI, vol. 13(2), pages 1-11, January.
    2. Song, Xingyang & Zhou, Guangsheng & He, Qijing & Zhou, Huailin, 2020. "Stomatal limitations to photosynthesis and their critical Water conditions in different growth stages of maize under water stress," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Li, Yupeng & Gu, Xiaobo & Li, Yuannong & Fang, Heng & Chen, Pengpeng, 2023. "Ridge-furrow mulching combined with appropriate nitrogen rate for enhancing photosynthetic efficiency, yield and water use efficiency of summer maize in a semi-arid region of China," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Cai, Fu & Zhang, Yushu & Mi, Na & Ming, Huiqing & Zhang, Shujie & Zhang, Hui & Zhao, Xianli, 2020. "Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Hou, Xianghao & Tang, Zijun & Li, Zhijun, 2022. "Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farooq, Muhammad & Hussain, Mubshar & Ul-Allah, Sami & Siddique, Kadambot H.M., 2019. "Physiological and agronomic approaches for improving water-use efficiency in crop plants," Agricultural Water Management, Elsevier, vol. 219(C), pages 95-108.
    2. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    3. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    4. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    5. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    6. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    7. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    8. Ibrahim Bolat & Asuman Gundogdu Bakır & Kubra Korkmaz & Gastón Gutiérrez-Gamboa & Ozkan Kaya, 2022. "Silicon and Nitric Oxide Applications Allow Mitigation of Water Stress in Myrobalan 29C Rootstocks ( Prunus cerasifera Ehrh.)," Agriculture, MDPI, vol. 12(8), pages 1-13, August.
    9. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    10. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    11. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng, 2022. "Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Cling, Jean-Pierre & Delecourt, Clément, 2022. "Interlinkages between the Sustainable Development Goals," World Development Perspectives, Elsevier, vol. 25(C).
    13. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    14. Angelucci, Federica & Conforti, Piero, 2010. "Risk management and finance along value chains of Small Island Developing States. Evidence from the Caribbean and the Pacific," Food Policy, Elsevier, vol. 35(6), pages 565-575, December.
    15. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    16. Taner Akan & Tim Solle, 2022. "Do macroeconomic and financial governance matter? Evidence from Germany, 1950–2019," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(4), pages 993-1045, October.
    17. Paolo Rizzi & Paola Graziano & Antonio Dallara, 2018. "A capacity approach to territorial resilience: the case of European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 285-328, March.
    18. Pérez, Claudia & Claveria, Oscar, 2020. "Natural resources and human development: Evidence from mineral-dependent African countries using exploratory graphical analysis," Resources Policy, Elsevier, vol. 65(C).
    19. Zeynep Ozkok, 2015. "Financial openness and financial development: an analysis using indices," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(5), pages 620-649, September.
    20. Asongu, Simplice A & Odhiambo, Nicholas M, 2019. "Governance,CO2 emissions and inclusive human development in Sub-Saharan Africa," Working Papers 25253, University of South Africa, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:190-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.