IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v192y2017icp1-11.html
   My bibliography  Save this article

Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions

Author

Listed:
  • Ji, X.B.
  • Chen, J.M.
  • Zhao, W.Z.
  • Kang, E.S.
  • Jin, B.W.
  • Xu, S.Q.

Abstract

The practical estimation of actual crop evapotranspiration (ETa) frequently involves calculating a reference crop evapotranspiration (ETref), and then applying suitable crop coefficients (Kc). Two standardized calculation procedures based on the Penman-Monteith equation are commonly used as ETref estimations (ETo for grass and ETr for alfalfa) across diverse environments. However, not much is known about the difference between ETo and ETr and their corresponding Kc values for maize in the arid environment of Northwest China with maize being the dominant crop. Estimates from the two procedures were comprehensively compared at both hourly and daily time steps for 2013 and 2014 growing seasons. The sum-of-hourly ETr and ETo (summed from hourly values over 24h periods) values were averagely lower than their corresponding daily ETr and ETo values (calculated from daily average meteorological data) by about 1% and 5% in 2013, and 2% and 7% in 2014, respectively. The ratios of ETr to ETo varied seasonally with a mean value slightly lower than the generalized value (1.35) for arid conditions, due primarily to the differences in responsiveness of both standardized PM equations to the trends and interations among input parameters. The Kc curves of maize based on grass-reference (Kco) and alfalfa-reference (Kcr) were experimentally derived using daily ETo and ETr combined with ETa measured by eddy covariance method. Results suggest the benefit and potentially improved accuracy for ETa estimation when applying alfalfa reference equation combined with the timestep-specific Kc curves under the arid conditions. These results provide an acceptable accuracy and precision for estimation of ETa of maize field use using the standardized Penman-Monteith equations, and offer the possibility of extrapolating new sets of Kco and Kcr to this region or other areas with similar climatic and crop management conditions.

Suggested Citation

  • Ji, X.B. & Chen, J.M. & Zhao, W.Z. & Kang, E.S. & Jin, B.W. & Xu, S.Q., 2017. "Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions," Agricultural Water Management, Elsevier, vol. 192(C), pages 1-11.
  • Handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:1-11
    DOI: 10.1016/j.agwat.2017.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417302184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perera, Kushan C. & Western, Andrew W. & Nawarathna, Bandara & George, Biju, 2015. "Comparison of hourly and daily reference crop evapotranspiration equations across seasons and climate zones in Australia," Agricultural Water Management, Elsevier, vol. 148(C), pages 84-96.
    2. Howell, Terry A. & Evett, Steven R. & Tolk, Judy A. & Copeland, Karen S. & Marek, Thomas H., 2015. "Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the U.S. Southern High Plains," Agricultural Water Management, Elsevier, vol. 162(C), pages 33-46.
    3. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    4. Lopez-Urrea, R. & Olalla, F. Martin de Santa & Fabeiro, C. & Moratalla, A., 2006. "An evaluation of two hourly reference evapotranspiration equations for semiarid conditions," Agricultural Water Management, Elsevier, vol. 86(3), pages 277-282, December.
    5. Snyder, R.L. & Pedras, C. & Montazar, A. & Henry, J.M. & Ackley, D., 2015. "Advances in ET-based landscape irrigation management," Agricultural Water Management, Elsevier, vol. 147(C), pages 187-197.
    6. Lecina, S. & Martinez-Cob, A. & Perez, P. J. & Villalobos, F. J. & Baselga, J. J., 2003. "Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions," Agricultural Water Management, Elsevier, vol. 60(3), pages 181-198, May.
    7. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    8. Facchi, A. & Gharsallah, O. & Corbari, C. & Masseroni, D. & Mancini, M. & Gandolfi, C., 2013. "Determination of maize crop coefficients in humid climate regime using the eddy covariance technique," Agricultural Water Management, Elsevier, vol. 130(C), pages 131-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Hui & Li, Sien & Kang, Shaozhong & Du, Taisheng & Liu, Wenfeng & Tong, Ling & Hao, Xinmei & Ding, Risheng, 2022. "The controlling factors of ecosystem water use efficiency in maize fields under drip and border irrigation systems in Northwest China," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    3. Ahmadi, Arman & Kazemi, Mohammad Hossein & Daccache, Andre & Snyder, Richard L., 2024. "SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation," Agricultural Water Management, Elsevier, vol. 295(C).
    4. Wang, Yunfei & Cai, Huanjie & Yu, Lianyu & Peng, Xiongbiao & Xu, Jiatun & Wang, Xiaowen, 2020. "Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime," Agricultural Water Management, Elsevier, vol. 236(C).
    5. Abimbola, Olufemi P. & Franz, Trenton E. & Rudnick, Daran & Heeren, Derek & Yang, Haishun & Wolf, Adam & Katimbo, Abia & Nakabuye, Hope N. & Amori, Anthony, 2022. "Improving crop modeling to better simulate maize yield variability under different irrigation managements," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Li, Danfeng, 2020. "Quantifying water use and groundwater recharge under flood irrigation in an arid oasis of northwestern China," Agricultural Water Management, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Widmoser, Peter, 2009. "A discussion on and alternative to the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 96(4), pages 711-721, April.
    3. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    5. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    6. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    7. Pozníková, Gabriela & Fischer, Milan & van Kesteren, Bram & Orság, Matěj & Hlavinka, Petr & Žalud, Zdeněk & Trnka, Miroslav, 2018. "Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods," Agricultural Water Management, Elsevier, vol. 209(C), pages 249-263.
    8. Laura Şmuleac & Ciprian Rujescu & Adrian Șmuleac & Florin Imbrea & Isidora Radulov & Dan Manea & Anișoara Ienciu & Tabita Adamov & Raul Pașcalău, 2020. "Impact of Climate Change in the Banat Plain, Western Romania, on the Accessibility of Water for Crop Production in Agriculture," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    9. Zanotelli, Damiano & Montagnani, Leonardo & Andreotti, Carlo & Tagliavini, Massimo, 2019. "Evapotranspiration and crop coefficient patterns of an apple orchard in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 226(C).
    10. Raziei, Tayeb & Pereira, Luis S., 2013. "Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran," Agricultural Water Management, Elsevier, vol. 121(C), pages 1-18.
    11. Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Mun, S. & Sassenrath, G.F. & Schmidt, A.M. & Lee, N. & Wadsworth, M.C. & Rice, B. & Corbitt, J.Q. & Schneider, J.M. & Tagert, M.L. & Pote, J. & Prabhu, R., 2015. "Uncertainty analysis of an irrigation scheduling model for water management in crop production," Agricultural Water Management, Elsevier, vol. 155(C), pages 100-112.
    13. Rana, G. & Katerji, N. & Lazzara, P. & Ferrara, R.M., 2012. "Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: Multiannual and local evaluations," Agricultural Water Management, Elsevier, vol. 115(C), pages 285-296.
    14. Moratiel, R. & Martínez-Cob, A. & Tarquis, A.M. & Snyder, R.L., 2016. "Soil water balance correction due to light rainfall, dew and fog in Ebro river basin (Spain)," Agricultural Water Management, Elsevier, vol. 170(C), pages 61-67.
    15. Wang, Yunfei & Cai, Huanjie & Yu, Lianyu & Peng, Xiongbiao & Xu, Jiatun & Wang, Xiaowen, 2020. "Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime," Agricultural Water Management, Elsevier, vol. 236(C).
    16. Nouri, Milad & Homaee, Mehdi, 2022. "Reference crop evapotranspiration for data-sparse regions using reanalysis products," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Alexandris, Stavros & Proutsos, Nikolaos, 2020. "How significant is the effect of the surface characteristics on the Reference Evapotranspiration estimates?," Agricultural Water Management, Elsevier, vol. 237(C).
    18. Xiaodong Ren & Zhongyi Qu & Diogo S. Martins & Paula Paredes & Luis S. Pereira, 2016. "Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3769-3791, September.
    19. Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
    20. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:192:y:2017:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.