IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424001148.html
   My bibliography  Save this article

SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation

Author

Listed:
  • Ahmadi, Arman
  • Kazemi, Mohammad Hossein
  • Daccache, Andre
  • Snyder, Richard L.

Abstract

Irrigation is the most significant consumer of freshwater worldwide. Deciding on the right amount of irrigation is crucial for sustainable water management and food production. The Penman-Monteith (P-M) reference crop evapotranspiration (ETO) is the gold standard in irrigation management and scheduling; however, its calculation requires measurements from multiple sensors over an extended reference grass surface. The cost of land, sensors, maintenance, and water to keep the grass surface green impedes having a dense network of ETO stations. To solve this challenge, this research aims to develop an input-limited ETO estimation approach based on historical weather data and machine learning (ML) algorithms to relax the need for a reference grass surface. This approach, called "SolarET," takes solar radiation (RS) data as its sole input. RS is the only meteorological driving factor of ETO that does not rely on the measuring surface. To test the generalizability of SolarET, we test its performance over unseen arbitrary locations across California. California is chosen as the case study since it is one of the world's most hydrologically altered and agriculturally productive regions. In total, 19,088,736 hourly data samples from 131 automated weather stations have been used in this study. The ML models have been trained over 114 stations and tested over 17 unseen stations, each representing a California climatic zone. Our findings point to the superiority of decision tree-based algorithms versus neural networks. SolarET works best in irrigation-oriented regions of California (e.g., Central Valley) and is less accurate in coastal and desert zones. Our results demonstrate the higher accuracy of SolarET using hourly (RMSE = 0.93 mm/day) and daily (RMSE = 0.97 mm/day) RS data in comparison to well-known empirical alternatives like Priestley-Taylor (PT) (RMSE = 1.35 mm/day) and Hargreaves-Samani (HS) (RMSE = 2.69 mm/day).

Suggested Citation

  • Ahmadi, Arman & Kazemi, Mohammad Hossein & Daccache, Andre & Snyder, Richard L., 2024. "SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001148
    DOI: 10.1016/j.agwat.2024.108779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hauke Jan & Kossowski Tomasz, 2011. "Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data," Quaestiones Geographicae, Sciendo, vol. 30(2), pages 87-93, June.
    2. Haghverdi, Amir & Singh, Amninder & Sapkota, Anish & Reiter, Maggie & Ghodsi, Somayeh, 2021. "Developing irrigation water conservation strategies for hybrid bermudagrass using an evapotranspiration-based smart irrigation controller in inland southern California," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Brian C Ross, 2014. "Mutual Information between Discrete and Continuous Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-5, February.
    4. Zhangzhong, Lili & Gao, Hairong & Zheng, Wengang & Wu, Jianwei & Li, Jingjing & Wang, Dequn, 2023. "Development of an evapotranspiration estimation method for lettuce via mobile phones using machine vision: Proof of concept," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Ji, X.B. & Chen, J.M. & Zhao, W.Z. & Kang, E.S. & Jin, B.W. & Xu, S.Q., 2017. "Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions," Agricultural Water Management, Elsevier, vol. 192(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agumas Alamirew Mebratu, 2024. "Theoretical foundations of voluntary tax compliance: evidence from a developing country," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-8, December.
    2. Alex Bara & Pierre LeRoux, 2018. "Technology, Financial Innovations and Bank Behavior in a Low Income Country," Journal of Economics and Behavioral Studies, AMH International, vol. 10(4), pages 221-234.
    3. Javier García López & Raffaele Sisto & Javier Benayas & Álvaro de Juanes & Julio Lumbreras & Carlos Mataix, 2021. "Assessment of the Results and Methodology of the Sustainable Development Index for Spanish Cities," Sustainability, MDPI, vol. 13(11), pages 1-29, June.
    4. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    5. Kandula, Shanthan & Krishnamoorthy, Srikumar & Roy, Debjit, 2020. "A Predictive and Prescriptive Analytics Framework for Efficient E-Commerce Order Delivery," IIMA Working Papers WP 2020-11-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    6. María Isabel Arango & Edier Aristizábal & Federico Gómez, 2021. "Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 983-1012, January.
    7. Adriana Gómez-Cabrera & Amalia Sanz-Benlloch & Laura Montalban-Domingo & Jose Luis Ponz-Tienda & Eugenio Pellicer, 2020. "Identification of Factors Affecting the Performance of Rural Road Projects in Colombia," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    8. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    9. Bouchra Zellou & Hassane Rahali, 2017. "Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 1-29, March.
    10. Judit Bar-Ilan & Mark Levene, 2015. "The hw-rank: an h-index variant for ranking web pages," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2247-2253, March.
    11. Patrik Silva & Lin Li, 2020. "Urban Crime Occurrences in Association with Built Environment Characteristics: An African Case with Implications for Urban Design," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    12. Ma Zhong & Rong Xu & Xinyi Liao & Shuangli Zhang, 2019. "Do CSR Ratings Converge in China? A Comparison Between RKS and Hexun Scores," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    13. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Sun, Long Long & Hu, Ya Peng & Zhu, Chen Ping, 2023. "Scaling invariance in domestic passenger flight delays in the United States," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    15. Wang, Weicheng & Chen, Jinglong & Zhang, Tianci & Liu, Zijun & Wang, Jun & Zhang, Xinwei & He, Shuilong, 2023. "An asymmetrical graph Siamese network for one-classanomaly detection of engine equipment with multi-source fusion," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    16. Xiaobo Yang & Zhilong Mi & Qingcai He & Binghui Guo & Zhiming Zheng, 2023. "Identification of Vital Genes for NSCLC Integrating Mutual Information and Synergy," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    17. Loredana Antronico & Roberto Coscarelli & Francesco De Pascale & Dante Di Matteo, 2020. "Climate Change and Social Perception: A Case Study in Southern Italy," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    18. Avinash Srikanta Murthy & Norhafiz Azis & Salem Al-Ameri & Mohd Fairouz Mohd Yousof & Jasronita Jasni & Mohd Aizam Talib, 2018. "Investigation of the Effect of Winding Clamping Structure on Frequency Response Signature of 11 kV Distribution Transformer," Energies, MDPI, vol. 11(9), pages 1-13, September.
    19. Upton, Joanna & Constenla-Villoslada, Susana & Barrett, Christopher B., 2022. "Caveat utilitor: A comparative assessment of resilience measurement approaches," Journal of Development Economics, Elsevier, vol. 157(C).
    20. Ishan Goel & Sukant Khurana, 2018. "A Bayesian measure of association that utilizes the underlying distributions of noise and information," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.