IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics037837742100706x.html
   My bibliography  Save this article

Improving crop modeling to better simulate maize yield variability under different irrigation managements

Author

Listed:
  • Abimbola, Olufemi P.
  • Franz, Trenton E.
  • Rudnick, Daran
  • Heeren, Derek
  • Yang, Haishun
  • Wolf, Adam
  • Katimbo, Abia
  • Nakabuye, Hope N.
  • Amori, Anthony

Abstract

Crop models have been used for investigating crop responses to environmental stresses for decades. The study objectives were to (i) calibrate and validate a simple crop model (Hybrid-Maize) using in-situ measured data from sixteen uniquely managed treatments as part of the University of Nebraska-Lincoln Testing Ag Performance Solutions (TAPS) program in North Platte, NE, and (ii) carry out sensitivity analysis and parameter estimation using a multi-parameter optimization approach. Sixteen Arable Mark 1 sensors and thirty two Mark 2 sensors (Arable Labs Inc., San Francisco, CA) collecting hourly and daily weather and crop information in 2019 and 2020 respectively, were installed in the TAPS subsurface drip irrigation experimental plots which were planted with maize and subjected to different irrigation and nitrogen practices. Hybrid-Maize was used for simulating maize yield on the sixteen treatments in 2019 and 2020. Sensitivity analysis showed that initial light use efficiency (LUE), potential kernel filling rate (G5), potential number of kernels per ear (G2), growth respiration coefficient of grain (GRG), empirical parameter determining the relative contribution of a soil layer to water uptake (SLW), and maximum photosynthetic rate (MPR) were the most sensitive parameters to yield. A novel multi-parameter optimization (MPO) approach based on kriging was used for calibrating these six parameters, and the best parameter sets which were later used for model validation. Calibration results showed that there seemed to be strong linear relationships between total water received (WR) and some of the parameters. By using each year’s MPO averages of the six parameters instead of default values, ME, MAE, RMSE, uRMSE, and nRMSE were all reduced by about 69%, 66%, 60%, 27%, and 61% respectively for validation treatments. The advantage of using in-situ sensors, coupled with the suitability of the calibrated model for simulating maize yield under different irrigation management, will make the model more useful in future field-scale research with focus on developing decision support tools for in-season crop management and yield forecasts.

Suggested Citation

  • Abimbola, Olufemi P. & Franz, Trenton E. & Rudnick, Daran & Heeren, Derek & Yang, Haishun & Wolf, Adam & Katimbo, Abia & Nakabuye, Hope N. & Amori, Anthony, 2022. "Improving crop modeling to better simulate maize yield variability under different irrigation managements," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s037837742100706x
    DOI: 10.1016/j.agwat.2021.107429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742100706X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    2. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    3. Ramos, T.B. & Simionesei, L. & Jauch, E. & Almeida, C. & Neves, R., 2017. "Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal," Agricultural Water Management, Elsevier, vol. 185(C), pages 27-42.
    4. Arora, V. K. & Gajri, P. R., 2000. "Assessment of a crop growth-water balance model for predicting maize growth and yield in a subtropical environment," Agricultural Water Management, Elsevier, vol. 46(2), pages 157-166, December.
    5. Egea, Gregorio & Padilla-Díaz, Carmen M. & Martinez-Guanter, Jorge & Fernández, José E. & Pérez-Ruiz, Manuel, 2017. "Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 210-221.
    6. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    7. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    8. Ji, X.B. & Chen, J.M. & Zhao, W.Z. & Kang, E.S. & Jin, B.W. & Xu, S.Q., 2017. "Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions," Agricultural Water Management, Elsevier, vol. 192(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    5. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    6. Sobol' Ilya M. & Shukhman Boris V., 2007. "On Global Sensitivity Indices: Monte Carlo Estimates Affected by Random Errors," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 89-97, April.
    7. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).
    8. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    9. Geries, L.S.M. & El-Shahawy, T.A. & Moursi, E.A., 2021. "Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    13. Viviane M. Gomes & Joao R. B. Paiva & Marcio R. C. Reis & Gabriel A. Wainer & Wesley P. Calixto, 2019. "Mechanism for Measuring System Complexity Applying Sensitivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-12, April.
    14. Carina Almeida & Tiago B. Ramos & João Sobrinho & Ramiro Neves & Rodrigo Proença de Oliveira, 2019. "An Integrated Modelling Approach to Study Future Water Demand Vulnerability in the Montargil Reservoir Basin, Portugal," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
    15. Lucio Di Matteo & Alessandro Spigarelli & Sofia Ortenzi, 2020. "Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    16. Kucherenko, S. & Song, S., 2017. "Different numerical estimators for main effect global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 222-238.
    17. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    18. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    19. Angelin Blessy & Avneesh Kumar & Prabagaran A & Abdul Quadir Md & Abdullah I. Alharbi & Ahlam Almusharraf & Surbhi B. Khan, 2023. "Sustainable Irrigation Requirement Prediction Using Internet of Things and Transfer Learning," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    20. Ramos, Tiago B. & Oliveira, Ana R. & Darouich, Hanaa & Gonçalves, Maria C. & Martínez-Moreno, Francisco J. & Rodríguez, Mario Ramos & Vanderlinden, Karl & Farzamian, Mohammad, 2023. "Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging," Agricultural Water Management, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s037837742100706x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.