IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v186y2017icp98-107.html
   My bibliography  Save this article

Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla

Author

Listed:
  • Robles, J.M.
  • Botía, P.
  • Pérez-Pérez, J.G.

Abstract

The response to a regulated deficit irrigation (RDI) strategy was evaluated in trees of ‘Verna’ lemon grafted on two rootstocks with different vigour. The experiment was carried out during three consecutive years in the IMIDA experimental orchard located in Torre Pacheco (Murcia, Spain), using 8-year-old trees of ‘Verna 51’ lemon grafted on Citrus macrophylla Wester (CM) and sour orange (Citrus aurantium L.) (SO). The tree spacing was 4×5m and irrigation was applied through one drip line per tree row, with four self-compensated drippers (4Lh−1) per tree. Two irrigation treatments were applied: Control (100% ETc) and RDI. The RDI trees were fully irrigated (100% ETc) along the season except in two fruit growth periods, phase I (cell division) and phase III (ripening and harvest), the irrigation applied being 25% ETc. The main results show that fully-irrigated trees on CM had better plant water status and greater efficiency of water use, which led to higher pruning weight and yield than on SO. With respect to fruit quality, CM fruits had higher juice content, while the fruits from SO trees had higher total soluble solids (TSS). However, under RDI the responses of the rootstocks differed. The water deficit imposed during the stress periods affected much more the plant water status of trees on SO than that of trees on CM, but the pruning weight decreased much more in CM trees than in SO trees. The RDI also affected the accumulated yield much more in CM trees (which suffered a 28% decrease) than in SO trees, which maintained values similar to those of the control. Fruit quality was affected by the RDI treatment similarly in the two rootstocks, with both the titratable acidity and TSS increasing. Thus, based on these results, we recommend the use of the CM rootstock for ‘Verna’ lemon trees grown in regions where the available water resources are not limiting, due to its higher vigour. However, we recommend the use of the SO rootstock when the water availability is not assured, due to its higher water stress tolerance.

Suggested Citation

  • Robles, J.M. & Botía, P. & Pérez-Pérez, J.G., 2017. "Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla," Agricultural Water Management, Elsevier, vol. 186(C), pages 98-107.
  • Handle: RePEc:eee:agiwat:v:186:y:2017:i:c:p:98-107
    DOI: 10.1016/j.agwat.2017.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741730077X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    2. Pérez-Pérez, J.G. & Robles, J.M. & Botía, P., 2014. "Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions," Agricultural Water Management, Elsevier, vol. 133(C), pages 44-54.
    3. Pedrero, F. & Maestre-Valero, J.F. & Mounzer, O. & Nortes, P.A. & Alcobendas, R. & Romero-Trigueros, C. & Bayona, J.M. & Alarcón, J.J. & Nicolás, E., 2015. "Response of young ‘Star Ruby’ grapefruit trees to regulated deficit irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 158(C), pages 51-60.
    4. Pérez-Pérez, J.G. & Robles, J.M. & Botía, P., 2009. "Influence of deficit irrigation in phase III of fruit growth on fruit quality in 'lane late' sweet orange," Agricultural Water Management, Elsevier, vol. 96(6), pages 969-974, June.
    5. Pérez-Pérez, J.G. & Robles, J.M. & García-Sánchez, F. & Botía, P., 2016. "Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions," Agricultural Water Management, Elsevier, vol. 164(P1), pages 46-57.
    6. Treeby, M.T. & Henriod, R.E. & Bevington, K.B. & Milne, D.J. & Storey, R., 2007. "Irrigation management and rootstock effects on navel orange [Citrus sinensis (L.) Osbeck] fruit quality," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 24-32, July.
    7. Pedrero, F. & Maestre-Valero, J.F. & Mounzer, O. & Alarcón, J.J. & Nicolás, E., 2014. "Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 146(C), pages 228-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abadía, J. & Bastida, F. & Romero-Trigueros, C. & Bayona, J.M. & Vera, A. & García, C. & Alarcón, J.J. & Nicolás, E., 2021. "Interactions between soil microbial communities and agronomic behavior in a mandarin crop subjected to water deficit and irrigated with reclaimed water," Agricultural Water Management, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maestre-Valero, J.F. & Martin-Gorriz, B. & Alarcón, J.J. & Nicolas, E. & Martinez-Alvarez, V., 2016. "Economic feasibility of implementing regulated deficit irrigation with reclaimed water in a grapefruit orchard," Agricultural Water Management, Elsevier, vol. 178(C), pages 119-125.
    2. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    4. Pérez-Pérez, J.G. & Robles, J.M. & García-Sánchez, F. & Botía, P., 2016. "Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions," Agricultural Water Management, Elsevier, vol. 164(P1), pages 46-57.
    5. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    6. Puig-Sirera, Àngela & Provenzano, Giuseppe & González-Altozano, Pablo & Intrigliolo, Diego S. & Rallo, Giovanni, 2021. "Irrigation water saving strategies in Citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit," Agricultural Water Management, Elsevier, vol. 248(C).
    7. Pérez-Pérez, J.G. & Robles, J.M. & Botía, P., 2014. "Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions," Agricultural Water Management, Elsevier, vol. 133(C), pages 44-54.
    8. Pedrero, F. & Maestre-Valero, J.F. & Mounzer, O. & Nortes, P.A. & Alcobendas, R. & Romero-Trigueros, C. & Bayona, J.M. & Alarcón, J.J. & Nicolás, E., 2015. "Response of young ‘Star Ruby’ grapefruit trees to regulated deficit irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 158(C), pages 51-60.
    9. Nicolás, E. & Alarcón, JJ & Mounzer, O. & Pedrero, F. & Nortes, PA & Alcobendas, R. & Romero-Trigueros, C. & Bayona, JM & Maestre-Valero, JF, 2016. "Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water," Agricultural Water Management, Elsevier, vol. 166(C), pages 1-8.
    10. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Zahedi, Seyed Morteza & Hosseini, Marjan Sadat & Daneshvar Hakimi Meybodi, Naghmeh & Abadía, Javier & Germ, Mateja & Gholami, Rahmatollah & Abdelrahman, Mostafa, 2022. "Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers," Agricultural Water Management, Elsevier, vol. 261(C).
    12. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Trigo-Córdoba, Emiliano & Bouzas-Cid, Yolanda & Orriols-Fernández, Ignacio & Mirás-Avalos, José Manuel, 2015. "Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain," Agricultural Water Management, Elsevier, vol. 161(C), pages 20-30.
    14. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Consoli, S. & Stagno, F. & Roccuzzo, G. & Cirelli, G.L. & Intrigliolo, F., 2014. "Sustainable management of limited water resources in a young orange orchard," Agricultural Water Management, Elsevier, vol. 132(C), pages 60-68.
    16. Rallo, Giovanni & González-Altozano, Pablo & Manzano-Juárez, Juan & Provenzano, Giuseppe, 2017. "Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 136-147.
    17. García-Tejero, I. & Jiménez-Bocanegra, J.A. & Martínez, G. & Romero, R. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]," Agricultural Water Management, Elsevier, vol. 97(5), pages 614-622, May.
    18. Liang Pei, 2022. "Features of Metallic Ion Distribution in Non-Traditional Water Agricultural Applications in Sandy Loam in an Arid Area," Sustainability, MDPI, vol. 14(17), pages 1-11, September.
    19. Ballester, C. & Castel, J. & Intrigliolo, D.S. & Castel, J.R., 2011. "Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition," Agricultural Water Management, Elsevier, vol. 98(6), pages 1027-1032, April.
    20. Bastida, F. & Torres, I.F. & Abadía, J. & Romero-Trigueros, C. & Ruiz-Navarro, A. & Alarcón, J.J. & García, C. & Nicolás, E., 2018. "Comparing the impacts of drip irrigation by freshwater and reclaimed wastewater on the soil microbial community of two citrus species," Agricultural Water Management, Elsevier, vol. 203(C), pages 53-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:186:y:2017:i:c:p:98-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.