IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v185y2017icp137-144.html
   My bibliography  Save this article

Estimating water balance, evapotranspiration and water use efficiency of spring safflower using the CROPGRO model

Author

Listed:
  • Singh, Sukhbir
  • Boote, Kenneth J.
  • Angadi, Sangamesh V.
  • Grover, Kulbhushan K.

Abstract

Inclusion of drought tolerant, low input crops such as safflower (Carthamus tinctorius L.) is one of the strategies to extend the life of fast declining Ogallala Aquifer in the Southern High Plains (SHP). Crop modeling is a viable option to simulate safflower water footprints in different climatic scenarios to assess its feasibility in optimization of water use in the SHP. Such progress would join corollary efforts to improve irrigation management practices of safflower for increased water productivity. The primary objective of the study was to calibrate the CROPGRO model for improved ability to simulate water balance, evapotranspiration (ET) and water use efficiency (WUE) of spring safflower. The model was calibrated based on soil water extraction data from PI8311 cultivar in an experiment conducted during 2013 and 2014 at Clovis, NM. The observed data from other two cultivars, 99OL and Nutrisaff, were used to evaluate the model. The model was able to simulate total above ground biomass of safflower in a reasonable fashion. The optimal prediction of soil water content, water balance and seed yield of safflower led to excellent ET and WUE simulations with root mean square error of 34mm and 0.6kgha−1mm−1, respectively. The satisfactory performance of the model for an independent data demonstrates that the CROPGRO model is capable of predicting water use of spring safflower in semi-arid regions of the SHP; however, site-specific calibrations based on weather, especially soil and rooting inputs may be needed in different regions.

Suggested Citation

  • Singh, Sukhbir & Boote, Kenneth J. & Angadi, Sangamesh V. & Grover, Kulbhushan K., 2017. "Estimating water balance, evapotranspiration and water use efficiency of spring safflower using the CROPGRO model," Agricultural Water Management, Elsevier, vol. 185(C), pages 137-144.
  • Handle: RePEc:eee:agiwat:v:185:y:2017:i:c:p:137-144
    DOI: 10.1016/j.agwat.2017.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417300689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan & Begna, Sultan & Auld, Dick, 2016. "Drought response and yield formation of spring safflower under different water regimes in the semiarid Southern High Plains," Agricultural Water Management, Elsevier, vol. 163(C), pages 354-362.
    2. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    3. Jiang, Yiwen & Zhang, Lanhui & Zhang, Baoqing & He, Chansheng & Jin, Xin & Bai, Xiao, 2016. "Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China," Agricultural Water Management, Elsevier, vol. 177(C), pages 37-45.
    4. K.J. Boote & J.W. Jones & G. Hoogenboom & J.W. White, 2010. "The Role of Crop Systems Simulation in Agriculture and Environment," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 1(1), pages 41-54, January.
    5. DeJonge, K.C. & Ascough, J.C. & Andales, A.A. & Hansen, N.C. & Garcia, L.A. & Arabi, M., 2012. "Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation," Agricultural Water Management, Elsevier, vol. 115(C), pages 92-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mulazzani, Rodrigo Pivoto & Gubiani, Paulo Ivonir & Zanon, Alencar Junior & Drescher, Marta Sandra & Schenato, Ricardo Bergamo & Girardello, Vitor Cauduro, 2022. "Impact of soil compaction on 30-year soybean yield simulated with CROPGRO-DSSAT," Agricultural Systems, Elsevier, vol. 203(C).
    2. Han, Qifei & Li, Chaofan & Zhao, Chengyi & Zhang, Yaoqi & Li, Shoubo, 2018. "Grazing decreased water use efficiency in Central Asia from 1979 to 2011," Ecological Modelling, Elsevier, vol. 388(C), pages 72-79.
    3. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Reginaldo Ferreira & Bassegio, Doglas & de Almeida Silva, Marcelo, 2017. "Productivity and production components of safflower genotypes affected by irrigation at phenological stages," Agricultural Water Management, Elsevier, vol. 186(C), pages 66-74.
    2. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Bhattarai, Bishwoyog & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Saini, Rupinder & Auld, Dick, 2020. "Spring safflower water use patterns in response to preseason and in-season irrigation applications," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Bhattarai, Bishwoyog & Singh, Sukhbir & West, Charles P. & Ritchie, Glen L. & Trostle, Calvin L., 2020. "Water Depletion Pattern and Water Use Efficiency of Forage Sorghum, Pearl millet, and Corn Under Water Limiting Condition," Agricultural Water Management, Elsevier, vol. 238(C).
    5. Araya, A. & Prasad, P.V.V. & Gowda, P.H. & Sharda, V. & Rice, C.W. & Ciampitti, I.A., 2021. "Evaluating optimal irrigation strategies for maize in Western Kansas," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Mahboobe Ghobadi & Mahdi Gheysari & Mohammad Shayannejad & Hamze Dokoohaki, 2023. "Analyzing the Effects of Planting Date on the Uncertainty of CERES-Maize and Its Potential to Reduce Yield Gap in Arid and Mediterranean Climates," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    8. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    9. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Shi, Xinrui & Batchelor, William D. & Liang, Hao & Li, Sien & Li, Baoguo & Hu, Kelin, 2020. "Determining optimal water and nitrogen management under different initial soil mineral nitrogen levels in northwest China based on a model approach," Agricultural Water Management, Elsevier, vol. 234(C).
    11. Gholami Zali, Ali & Ehsanzadeh, Parviz, 2018. "Exogenously applied proline as a tool to enhance water use efficiency: Case of fennel," Agricultural Water Management, Elsevier, vol. 197(C), pages 138-146.
    12. Escarabajal-Henarejos, D. & Molina-Martínez, J.M. & Fernández-Pacheco, D.G. & García-Mateos, G., 2015. "Methodology for obtaining prediction models of the root depth of lettuce for its application in irrigation automation," Agricultural Water Management, Elsevier, vol. 151(C), pages 167-173.
    13. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    14. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    15. Ágota Horel & Tibor Zsigmond & Csilla Farkas & Györgyi Gelybó & Eszter Tóth & Anikó Kern & Zsófia Bakacsi, 2022. "Climate Change Alters Soil Water Dynamics under Different Land Use Types," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    16. Yang, Meijian & Wang, Guiling & Lazin, Rehenuma & Shen, Xinyi & Anagnostou, Emmanouil, 2021. "Impact of planting time soil moisture on cereal crop yield in the Upper Blue Nile Basin: A novel insight towards agricultural water management," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Espoir M. Bagula & Jackson Gilbert M. Majaliwa & Gustave N. Mushagalusa & Twaha A. Basamba & John-Baptist Tumuhairwe & Jean-Gomez M. Mondo & Patrick Musinguzi & Cephas B. Mwimangire & Géant B. Chuma &, 2022. "Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo," Land, MDPI, vol. 11(9), pages 1-22, August.
    18. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    19. Kothari, Kritika & Ale, Srinivasulu & Bordovsky, James P. & Thorp, Kelly R. & Porter, Dana O. & Munster, Clyde L., 2019. "Simulation of efficient irrigation management strategies for grain sorghum production over different climate variability classes," Agricultural Systems, Elsevier, vol. 170(C), pages 49-62.
    20. Kaur, Rajbir & Arora, VK, 2018. "Assessing spring maize responses to irrigation and nitrogen regimes in north-west India using CERES-Maize model," Agricultural Water Management, Elsevier, vol. 209(C), pages 171-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:185:y:2017:i:c:p:137-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.