IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v179y2017icp110-121.html
   My bibliography  Save this article

Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China

Author

Listed:
  • Tian, Fuqiang
  • Yang, Pengju
  • Hu, Hongchang
  • Liu, Hui

Abstract

Evapotranspiration (latent heat flux) is an important component of the water and energy balance in agricultural ecosystems. Water and energy fluxes were measured for three years (2012–2014) by the eddy covariance system at a cotton field under film-mulched drip irrigation in Xinjiang, an arid region of northwestern China. This region produces over 50% of China’s cotton yield, and irrigation accounts for 96.2% of the regional water consumption. The turbulent energy fluxes measured by the eddy covariance accounted for approximately 60%–70% of the available energy. The latent energy (LE) comprised 86%–93% of net radiation during the rapid growing season (June to early August); of this percentage range, 20%–30% was induced by the higher sensible heat advection caused by agricultural irrigation. On the other hand, the sensible heat (H) decreased to very small values and even was negative in July and August, due to the increased evapotranspiration and growth of cotton leaves and thus the decline of surface temperature. The influence of canopy conductance on evapotranspiration showed a threshold effect. A positive relationship between canopy conductance and the Priestley-Taylor coefficient was observed when the canopy conductance was lower than 8mm/s. Path analysis was used to quantify the direct and indirect effects of meteorological factors (the net radiation Rn, wind speed Ws, air temperature Ta, and saturation vapour pressure deficit (VPD) on LE and canopy conductance (Gc). The variance of LE and Gc are both 0.15, indicating that meteorology can explain 85% of LE andGc. On a weekly time scale, both Gc and LE were significantly, directly, and positively affected by Rn and Ta and were significantly, directly, and negatively affected by VPD.

Suggested Citation

  • Tian, Fuqiang & Yang, Pengju & Hu, Hongchang & Liu, Hui, 2017. "Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China," Agricultural Water Management, Elsevier, vol. 179(C), pages 110-121.
  • Handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:110-121
    DOI: 10.1016/j.agwat.2016.06.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741630244X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.06.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petrone, R.M. & Smith, C. & Macrae, M.L. & English, M.C., 2006. "Riparian zone equilibrium and actual evapotranspiration in a first order agricultural catchment in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 86(3), pages 240-248, December.
    2. Ding, Risheng & Kang, Shaozhong & Li, Fusheng & Zhang, Yanqun & Tong, Ling & Sun, Qingyu, 2010. "Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China," Agricultural Water Management, Elsevier, vol. 98(1), pages 87-95, December.
    3. Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
    4. Ding, Risheng & Kang, Shaozhong & Vargas, Rodrigo & Zhang, Yanqun & Hao, Xinmei, 2013. "Multiscale spectral analysis of temporal variability in evapotranspiration over irrigated cropland in an arid region," Agricultural Water Management, Elsevier, vol. 130(C), pages 79-89.
    5. Cammalleri, C. & Rallo, G. & Agnese, C. & Ciraolo, G. & Minacapilli, M. & Provenzano, G., 2013. "Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard," Agricultural Water Management, Elsevier, vol. 120(C), pages 89-97.
    6. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Liu, Shuhui, 2011. "Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area," Agricultural Water Management, Elsevier, vol. 100(1), pages 58-69.
    7. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.
    8. Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Li, Sien, 2015. "A dynamic surface conductance to predict crop water use from partial to full canopy cover," Agricultural Water Management, Elsevier, vol. 150(C), pages 1-8.
    9. Li, Longhui & Yu, Qiang, 2007. "Quantifying the effects of advection on canopy energy budgets and water use efficiency in an irrigated wheat field in the North China Plain," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 116-122, April.
    10. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    2. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    3. Wang, Xingwang & Huo, Zailin & Shukla, Manoj K. & Wang, Xianghao & Guo, Ping & Xu, Xu & Huang, Guanhua, 2020. "Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Gong, Xuewen & Qiu, Rangjian & Zhang, Baozhong & Wang, Shunsheng & Ge, Jiankun & Gao, Shikai & Yang, Zaiqiang, 2021. "Energy budget for tomato plants grown in a greenhouse in northern China," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Zhao, Yin & Mao, Xiaomin & Shukla, Manoj K. & Tian, Fei & Hou, Mengjie & Zhang, Tong & Li, Sien, 2021. "How does film mulching modify available energy, evapotranspiration, and crop coefficient during the seed–maize growing season in northwest China?," Agricultural Water Management, Elsevier, vol. 245(C).
    6. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Jiao, Linjie & Ding, Risheng & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Li, Sien, 2018. "A comparison of energy partitioning and evapotranspiration over closed maize and sparse grapevine canopies in northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 251-260.
    8. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    9. Yan, Haofang & Deng, Shuaishuai & Zhang, Chuan & Wang, Guoqing & Zhao, Shuang & Li, Mi & Liang, Shaowei & Jiang, Jianhui & Zhou, Yudong, 2023. "Determination of energy partition of a cucumber grown Venlo-type greenhouse in southeast China," Agricultural Water Management, Elsevier, vol. 276(C).
    10. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Li, Meng & Du, Yingji & Zhang, Fucang & Bai, Yungang & Fan, Junliang & Zhang, Jianghui & Chen, Shaoming, 2019. "Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model," Agricultural Water Management, Elsevier, vol. 218(C), pages 124-138.
    12. Qin, Shujing & Fan, Yangzhen & Li, Sien & Cheng, Lei & Zhang, Lu & Xi, Haiyang & Qiu, Rangjian & Liu, Pan, 2023. "Partitioning of available energy in canopy and soil surface in croplands with different irrigation methods," Agricultural Water Management, Elsevier, vol. 288(C).
    13. Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling & Li, Sien, 2022. "Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress," Agricultural Water Management, Elsevier, vol. 268(C).
    14. Sunling, Yang & Shahzad, Ali & Wang, Meng & Xi, Yueling & Shaik, Mohammed Rafi & Khan, Mujeeb, 2024. "Urease and nitrification inhibitors with drip fertigation strategies to mitigate global warming potential and improve water-nitrogen efficiency of maize under semi-arid regions," Agricultural Water Management, Elsevier, vol. 295(C).
    15. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yunfei & Zou, Yufeng & Cai, Huanjie & Zeng, Yijian & He, Jianqiang & Yu, Lianyu & Zhang, Chao & Saddique, Qaisar & Peng, Xiongbiao & Siddique, Kadambot H.M. & Yu, Qiang & Su, Zhongbo, 2022. "Seasonal variation and controlling factors of evapotranspiration over dry semi-humid cropland in Guanzhong Plain, China," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    3. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    4. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    5. Wang, Shangtao & Zhu, Gaofeng & Xia, Dunsheng & Ma, Jinzhu & Han, Tuo & Ma, Ting & Zhang, Kun & Shang, Shasha, 2019. "The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 388-398.
    6. Tan, Shuai & Wang, Quanjiu & Zhang, Jihong & Chen, Yong & Shan, Yuyang & Xu, Di, 2018. "Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 196(C), pages 99-113.
    7. Gong, Xuewen & Qiu, Rangjian & Zhang, Baozhong & Wang, Shunsheng & Ge, Jiankun & Gao, Shikai & Yang, Zaiqiang, 2021. "Energy budget for tomato plants grown in a greenhouse in northern China," Agricultural Water Management, Elsevier, vol. 255(C).
    8. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    9. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    10. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    11. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    12. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
    13. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    14. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    15. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    16. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    17. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    18. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    19. Zhang, Yongyong & Wu, Shaoxiong & Kang, Wenrong & Tian, Zihan, 2022. "Multiple sources characteristics of root water uptake of crop under oasis farmlands in hyper-arid regions," Agricultural Water Management, Elsevier, vol. 271(C).
    20. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:110-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.