IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v130y2013icp79-89.html
   My bibliography  Save this article

Multiscale spectral analysis of temporal variability in evapotranspiration over irrigated cropland in an arid region

Author

Listed:
  • Ding, Risheng
  • Kang, Shaozhong
  • Vargas, Rodrigo
  • Zhang, Yanqun
  • Hao, Xinmei

Abstract

The temporal patterns of evapotranspiration (ET) and its biophysical and physiological controls (e.g., soil water content, solar radiation, and canopy conductance) occur over a wide range of time-scales ranging from seconds to decades. Thus, there is increasing interest in understanding at which scales the main temporal correlations between ET and its controlling factors occur across different ecosystems. For this study, we used eddy covariance measurements of ET over 2 years at an irrigated maize field in an arid inland region of northwest China. We applied the wavelet transform as a novel technique to examine spectral characteristics of ET and its controlling factors. The ET power spectra displayed a −1 power law in turbulent inertial subrange at <1-h time-scale, and showed substantial power at daily, seasonal and annual time-scales. The cospectra of ET and soil water content (SWC) showed significant temporal correlation at 5-days, which has implications for calculation of ET using the soil water balance method in this region. We found that ET synchronized with the change of net radiation, and led vapor pressure deficit and air temperature for ∼2h at the 1-day time-scale (i.e., positive lags), but the phase relationship between ET and SWC was influenced by irrigation patterns. Canopy conductance influenced ET variability at the 1-day time-scale, but the effect was not consistent across the growing seasons. Our results show the importance of irrigation practices and its influence on the multi-temporal correlations of ET and its controlling factors. Irrigation can sharply change the phase angle relationship of ET and SWC from −10h to 10h. These results are important for understanding water cycle processes, improving water management, and address food security issues across irrigated croplands in arid regions.

Suggested Citation

  • Ding, Risheng & Kang, Shaozhong & Vargas, Rodrigo & Zhang, Yanqun & Hao, Xinmei, 2013. "Multiscale spectral analysis of temporal variability in evapotranspiration over irrigated cropland in an arid region," Agricultural Water Management, Elsevier, vol. 130(C), pages 79-89.
  • Handle: RePEc:eee:agiwat:v:130:y:2013:i:c:p:79-89
    DOI: 10.1016/j.agwat.2013.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741300228X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    2. Ding, Risheng & Kang, Shaozhong & Li, Fusheng & Zhang, Yanqun & Tong, Ling & Sun, Qingyu, 2010. "Evaluating eddy covariance method by large-scale weighing lysimeter in a maize field of northwest China," Agricultural Water Management, Elsevier, vol. 98(1), pages 87-95, December.
    3. Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
    4. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei & Wang, Yanzhe, 2011. "Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades," Agricultural Water Management, Elsevier, vol. 98(6), pages 1097-1104, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Fuqiang & Yang, Pengju & Hu, Hongchang & Liu, Hui, 2017. "Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China," Agricultural Water Management, Elsevier, vol. 179(C), pages 110-121.
    2. Zhang, Tao & Qiu, Rangjian & Ding, Risheng & Wu, Jingwei & Clothier, Brent, 2023. "Multi-scale spectral characteristics of latent heat flux over flooded rice and winter wheat rotation system," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Nam, Won-Ho & Hong, Eun-Mi & Choi, Jin-Yong, 2015. "Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?," Agricultural Water Management, Elsevier, vol. 150(C), pages 129-138.
    4. Wang, Yunfei & Zou, Yufeng & Cai, Huanjie & Zeng, Yijian & He, Jianqiang & Yu, Lianyu & Zhang, Chao & Saddique, Qaisar & Peng, Xiongbiao & Siddique, Kadambot H.M. & Yu, Qiang & Su, Zhongbo, 2022. "Seasonal variation and controlling factors of evapotranspiration over dry semi-humid cropland in Guanzhong Plain, China," Agricultural Water Management, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Du, Taisheng, 2013. "Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching," Agricultural Water Management, Elsevier, vol. 127(C), pages 85-96.
    2. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    4. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    5. Ding, Risheng & Kang, Shaozhong & Zhang, Yanqun & Hao, Xinmei & Tong, Ling & Li, Sien, 2015. "A dynamic surface conductance to predict crop water use from partial to full canopy cover," Agricultural Water Management, Elsevier, vol. 150(C), pages 1-8.
    6. Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
    7. Wang, Yunfei & Cai, Huanjie & Yu, Lianyu & Peng, Xiongbiao & Xu, Jiatun & Wang, Xiaowen, 2020. "Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime," Agricultural Water Management, Elsevier, vol. 236(C).
    8. Wang, Zikui & Wu, Pute & Zhao, Xining & Gao, Ying & Chen, Xiaoli, 2015. "Water use and crop coefficient of the wheat–maize strip intercropping system for an arid region in northwestern China," Agricultural Water Management, Elsevier, vol. 161(C), pages 77-85.
    9. Zhang, Tao & Qiu, Rangjian & Ding, Risheng & Wu, Jingwei & Clothier, Brent, 2023. "Multi-scale spectral characteristics of latent heat flux over flooded rice and winter wheat rotation system," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    11. Feng, Xuyu & Liu, Haijun & Feng, Dongxue & Tang, Xiaopei & Li, Lun & Chang, Jie & Tanny, Josef & Liu, Ronghao, 2023. "Quantifying winter wheat evapotranspiration and crop coefficients under sprinkler irrigation using eddy covariance technology in the North China Plain," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Sui, Juan & Wu, Zhongdong & Mo, Yan, 2018. "Effects of film mulching on evapotranspiration, yield and water use efficiency of a maize field with drip irrigation in Northeastern China," Agricultural Water Management, Elsevier, vol. 205(C), pages 90-99.
    13. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    14. Zhang, Yongyong & Wu, Shaoxiong & Kang, Wenrong & Tian, Zihan, 2022. "Multiple sources characteristics of root water uptake of crop under oasis farmlands in hyper-arid regions," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Holst, Jirko & Liu, Wenping & Zhang, Qian & Doluschitz, Reiner, 2014. "Crop evapotranspiration, arable cropping systems and water sustainability in southern Hebei, P.R. China," Agricultural Water Management, Elsevier, vol. 141(C), pages 47-54.
    16. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    18. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    19. Gao, Lei & Zhao, Peng & Kang, Shaozhong & Li, Sien & Tong, Ling & Ding, Risheng & Lu, Hongna, 2019. "Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard," Agricultural Water Management, Elsevier, vol. 226(C).
    20. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:130:y:2013:i:c:p:79-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.