IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i12p1309-d85061.html
   My bibliography  Save this article

Gridded Water Resource Distribution Simulation for China Based on Third-Order Basin Data from 2002

Author

Listed:
  • Mingguang Tu

    (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
    Institute of Remote Sensing and Digital Earth, University of Chinese Academy of Sciences, Beijing 100101, China)

  • Futao Wang

    (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

  • Yi Zhou

    (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

  • Shixin Wang

    (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Water resources are a key factor for regional sustainable development. However, the published water resource data in China is based on a large geographical scale, such as watershed units, and the data cannot reflect subtle differences in water resource distribution. The paper aimed to distribute water resources of the third-order basin of China into grid-cells of 1 km × 1 km. First, we used Moran’s I index to analyze the spatial pattern of water resources of the third-order basin. Second, we constructed a spatial autocorrelation model between water resources of third-order basins and the associated factors. Third, we applied the model to simulate the gridded water resource distribution and evaluated the simulation accuracy. The results indicated that significant spatial autocorrelation existed among the water resources of third-order basins. Northern China was the low-value clustering area of water resources and Southeast China was the high-value clustering area of water resources. Slope and precipitation were the main factors that influenced the amount of water resources. The simulating accuracy of water resource distribution was very high, apart from some extremely arid regions (Gurbantunggut Desert, Kumtag Desert, and Hexi Desert). On the whole, the gridded water resource distribution map was valid and was helpful for regional water resource management.

Suggested Citation

  • Mingguang Tu & Futao Wang & Yi Zhou & Shixin Wang, 2016. "Gridded Water Resource Distribution Simulation for China Based on Third-Order Basin Data from 2002," Sustainability, MDPI, vol. 8(12), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1309-:d:85061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/12/1309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/12/1309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chuang-lin Fang & Chao Bao & Jin-chuan Huang, 2007. "Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1613-1633, September.
    2. Bao, Chao & Fang, Chuang-lin, 2007. "Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China," Ecological Economics, Elsevier, vol. 62(3-4), pages 508-517, May.
    3. Chao Bao & Dongmei He, 2015. "The Causal Relationship between Urbanization, Economic Growth and Water Use Change in Provincial China," Sustainability, MDPI, vol. 7(12), pages 1-10, December.
    4. Nankervis, J. C. & Savin, N. E., 1985. "Testing the autoregressive parameter with the t statistic," Journal of Econometrics, Elsevier, vol. 27(2), pages 143-161, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowei Chuai & Ye Yuan & Rongqin Zhao & Song Song, 2021. "High-resolution monitoring of inland water bodies across China in long time series and water resource changes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3673-3695, March.
    2. Ying Zhang & Ling Zhang & Jinliang Hou & Juan Gu & Chunlin Huang, 2017. "Development of an Evapotranspiration Data Assimilation Technique for Streamflow Estimates: A Case Study in a Semi-Arid Region," Sustainability, MDPI, vol. 9(10), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    2. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    3. Boyu Wang & Xiang Gao, 2021. "Temporal and spatial variations of water resources constraint intensity on urbanization in the Shiyang River Basin, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10038-10055, July.
    4. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    5. Yunqiang Liu & Jiuping Xu & Huawei Luo, 2014. "An Integrated Approach to Modelling the Economy-Society-Ecology System in Urbanization Process," Sustainability, MDPI, vol. 6(4), pages 1-27, April.
    6. Hailiang Ma & Nan-Ting Chou & Lei Wang, 2016. "Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    7. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi, 2016. "An Integrated Approach to Explore the Relationship Among Economic, Construction Land Use, and Ecology Subsystems in Zhejiang Province, China," Sustainability, MDPI, vol. 8(5), pages 1-20, May.
    8. Guangdong Li & Chuanglin Fang, 2014. "Analyzing the multi-mechanism of regional inequality in China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(1), pages 155-182, January.
    9. Chao Bao & Dongmei He, 2015. "The Causal Relationship between Urbanization, Economic Growth and Water Use Change in Provincial China," Sustainability, MDPI, vol. 7(12), pages 1-10, December.
    10. Mingxing Chen & Hua Zhang & Weidong Liu & Wenzhong Zhang, 2014. "The Global Pattern of Urbanization and Economic Growth: Evidence from the Last Three Decades," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    11. Yi Huang & Qianqian Qiu & Yehua Sheng & Xiangqiang Min & Yuwei Cao, 2019. "Exploring the Relationship between Urbanization and the Eco-Environment: A Case Study of Beijing," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    12. Li, Mo & Guo, Ping & Singh, Vijay P. & Yang, Gaiqiang, 2016. "An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation," Agricultural Water Management, Elsevier, vol. 177(C), pages 10-23.
    13. Chao Bao & Jianjun Zou, 2017. "Exploring the Coupling and Decoupling Relationships between Urbanization Quality and Water Resources Constraint Intensity: Spatiotemporal Analysis for Northwest China," Sustainability, MDPI, vol. 9(11), pages 1-17, October.
    14. Huailin Zhang & Zhibin Zhang & Jianhong Dong & Fawen Gao & Wenbin Zhang & Weimin Gong, 2020. "Spatial production or sustainable development? An empirical research on the urbanization of less-developed regions based on the case of Hexi Corridor in China," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
    15. Zhigong Peng & Baozhong Zhang & Xueliang Cai & Lei Wang, 2016. "Effects of Water Management Strategies on Water Balance in a Water Scarce Region: A Case Study in Beijing by a Holistic Model," Sustainability, MDPI, vol. 8(8), pages 1-14, August.
    16. Chao Bao & Chuang-lin Fang, 2012. "Water Resources Flows Related to Urbanization in China: Challenges and Perspectives for Water Management and Urban Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 531-552, January.
    17. Hong, Yu & Berentsen, Paul & Heerink, Nico & Shi, Minjun & van der Werf, Wopke, 2019. "The future of intercropping under growing resource scarcity and declining grain prices - A model analysis based on a case study in Northwest China," Agricultural Systems, Elsevier, vol. 176(C).
    18. Yiru Guo & Yan Hu & Ke Shi & Yuriy Bilan, 2020. "Valuation of Water Resource Green Efficiency Based on SBM–TOBIT Panel Model: Case Study from Henan Province, China," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    19. Stefan Liehr & Julia Röhrig & Marion Mehring & Thomas Kluge, 2017. "How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    20. Xiuli Liu & Xikang Chen & Shouyang Wang, 2009. "Evaluating and Predicting Shadow Prices of Water Resources in China and Its Nine Major River Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1467-1478, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1309-:d:85061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.