IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v171y2016icp31-39.html
   My bibliography  Save this article

Reference values of maximum daily trunk shrinkage for irrigation scheduling in mid-late maturing peach trees

Author

Listed:
  • Mirás-Avalos, José Manuel
  • Pérez-Sarmiento, Francisco
  • Alcobendas, Rosalía
  • Alarcón, Juan José
  • Mounzer, Oussama
  • Nicolás, Emilio

Abstract

Precise irrigation is essential in arid and semi-arid areas where water is scarce, such as the South-East of Spain. Therefore, finding a precise and reliable plant water status indicator, which could be automatically monitored, is of paramount importance. Maximum daily trunk shrinkage (MDS) showed some potential for irrigation scheduling. However, MDS records may be difficult to interpret and reference baselines could be useful for this interpretation. In the current study, measurements of midday stem water potential (Ψs) and MDS were taken over a 3-year period in peach trees [Prunus persica (L.) Batsch cv. ‘Catherine’], in order to obtain reference baselines for irrigation scheduling. Plants were daily irrigated above their water requirements (∼120%) in order to obtain non-limiting soil water conditions. Climate parameters and MDS were recorded automatically, whereas midday stem water potential was assessed in the field every 3 days. The relationships between MDS and climate parameters such as ET0, daily maximum and midday air temperatures (Tmax and Tmid, respectively), maximum and midday air vapour pressure deficit (VPDmax and VPDmid, respectively) were determined. The results indicate that MDS records were better related to Tmid and Tmax than to other meteorological variables. The relationship between MDS and Ψs differed from year to year. However, these relationships varied greatly with the conditions of each year, tree phenological stage and crop load. Therefore, the growers must be aware of these factors when using MDS values for irrigation scheduling.

Suggested Citation

  • Mirás-Avalos, José Manuel & Pérez-Sarmiento, Francisco & Alcobendas, Rosalía & Alarcón, Juan José & Mounzer, Oussama & Nicolás, Emilio, 2016. "Reference values of maximum daily trunk shrinkage for irrigation scheduling in mid-late maturing peach trees," Agricultural Water Management, Elsevier, vol. 171(C), pages 31-39.
  • Handle: RePEc:eee:agiwat:v:171:y:2016:i:c:p:31-39
    DOI: 10.1016/j.agwat.2016.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416301019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreno, F. & Conejero, W. & Martin-Palomo, M.J. & Giron, I.F. & Torrecillas, A., 2006. "Maximum daily trunk shrinkage reference values for irrigation scheduling in olive trees," Agricultural Water Management, Elsevier, vol. 84(3), pages 290-294, August.
    2. Intrigliolo, D.S. & Puerto, H. & Bonet, L. & Alarcón, J.J. & Nicolas, E. & Bartual, J., 2011. "Usefulness of trunk diameter variations as continuous water stress indicators of pomegranate (Punica granatum) trees," Agricultural Water Management, Elsevier, vol. 98(9), pages 1462-1468, July.
    3. Corell, M. & Girón, I.F. & Moriana, A. & Dell’Amico, J. & Morales, D. & Moreno, F., 2013. "Extrapolating base-line trunk shrinkage reference equations across olive orchards," Agricultural Water Management, Elsevier, vol. 126(C), pages 1-8.
    4. Nicolas, E. & Torrecillas, A. & Ortuno, M.F. & Domingo, R. & Alarcon, J.J., 2005. "Evaluation of transpiration in adult apricot trees from sap flow measurements," Agricultural Water Management, Elsevier, vol. 72(2), pages 131-145, March.
    5. Moriana, A. & Moreno, F. & Girón, I.F. & Conejero, W. & Ortuño, M.F. & Morales, D. & Corell, M. & Torrecillas, A., 2011. "Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load," Agricultural Water Management, Elsevier, vol. 99(1), pages 121-127.
    6. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.
    7. de la Rosa, J.M. & Conesa, M.R. & Domingo, R. & Torres, R. & Pérez-Pastor, A., 2013. "Feasibility of using trunk diameter fluctuation and stem water potential reference lines for irrigation scheduling of early nectarine trees," Agricultural Water Management, Elsevier, vol. 126(C), pages 133-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    2. Mira-García, Ana Belén & Conejero, Wenceslao & Vera, Juan & Ruiz-Sánchez, M.Carmen, 2022. "Water status and thermal response of lime trees to irrigation and shade screen," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Li, Doudou & Fernández, José Enrique & Li, Xin & Xi, Benye & Jia, Liming & Hernandez-Santana, Virginia, 2020. "Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Assouline, Shmuel & Hochberg, Uri & Silber, Avner, 2021. "The impact of tree phenology on the response of irrigated avocado: The hysteretic nature of the maximum trunk daily shrinkage," Agricultural Water Management, Elsevier, vol. 256(C).
    5. García, Ana Belén Mira & Romero-Trigueros, Cristina & Gambín, José María Bayona & Sánchez Iglesias, Ma del Puerto & Tortosa, Pedro Antonio Nortes & Nicolás, Emilio Nicolás, 2023. "Estimation of stomatal conductance by infra-red thermometry in citrus trees cultivated under regulated deficit irrigation and reclaimed water," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    2. Corell, M. & Pérez-López, D. & Martín-Palomo, M.J. & Centeno, A. & Girón, I. & Galindo, A. & Moreno, M.M. & Moreno, C. & Memmi, H. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Comparison of the water potential baseline in different locations. Usefulness for irrigation scheduling of olive orchards," Agricultural Water Management, Elsevier, vol. 177(C), pages 308-316.
    3. Corell, M. & Girón, I.F. & Galindo, A. & Torrecillas, A. & Torres-Sánchez, R. & Pérez-Pastor, A. & Moreno, F. & Moriana, A., 2014. "Using band dendrometers in irrigation scheduling," Agricultural Water Management, Elsevier, vol. 142(C), pages 29-37.
    4. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    5. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees," Agricultural Water Management, Elsevier, vol. 161(C), pages 114-126.
    6. Conesa, M.R. & Torres, R. & Domingo, R. & Navarro, H. & Soto, F. & Pérez-Pastor, A., 2016. "Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes," Agricultural Water Management, Elsevier, vol. 172(C), pages 51-61.
    7. de la Rosa, J.M. & Conesa, M.R. & Domingo, R. & Torres, R. & Pérez-Pastor, A., 2013. "Feasibility of using trunk diameter fluctuation and stem water potential reference lines for irrigation scheduling of early nectarine trees," Agricultural Water Management, Elsevier, vol. 126(C), pages 133-141.
    8. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    9. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Limitations and usefulness of maximum daily shrinkage (MDS) and trunk growth rate (TGR) indicators in the irrigation scheduling of table olive trees," Agricultural Water Management, Elsevier, vol. 164(P1), pages 38-45.
    10. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    11. Corell, M. & Girón, I.F. & Moriana, A. & Dell’Amico, J. & Morales, D. & Moreno, F., 2013. "Extrapolating base-line trunk shrinkage reference equations across olive orchards," Agricultural Water Management, Elsevier, vol. 126(C), pages 1-8.
    12. Silber, A. & Naor, A. & Israeli, Y. & Assouline, S., 2013. "Combined effect of irrigation regime and fruit load on the patterns of trunk-diameter variation of ‘Hass’ avocado at different phenological periods," Agricultural Water Management, Elsevier, vol. 129(C), pages 87-94.
    13. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    14. Conejero, W. & Ortuño, M.F. & Mellisho, C.D. & Torrecillas, A., 2010. "Influence of crop load on maximum daily trunk shrinkage reference equations for irrigation scheduling of early maturing peach trees," Agricultural Water Management, Elsevier, vol. 97(2), pages 333-338, February.
    15. Moriana, A. & Moreno, F. & Girón, I.F. & Conejero, W. & Ortuño, M.F. & Morales, D. & Corell, M. & Torrecillas, A., 2011. "Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load," Agricultural Water Management, Elsevier, vol. 99(1), pages 121-127.
    16. Corell, M. & Martín-Palomo, M.J. & Pérez-López, D. & Centeno, A. & Girón, I. & Moreno, F. & Torrecillas, A. & Moriana, A., 2017. "Approach for using trunk growth rate (TGR) in the irrigation scheduling of table olive orchards," Agricultural Water Management, Elsevier, vol. 192(C), pages 12-20.
    17. Cuevas, M.V. & Torres-Ruiz, J.M. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Fernández, J.E., 2010. "Assessment of trunk diameter variation derived indices as water stress indicators in mature olive trees," Agricultural Water Management, Elsevier, vol. 97(9), pages 1293-1302, September.
    18. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    19. Li, Doudou & Fernández, José Enrique & Li, Xin & Xi, Benye & Jia, Liming & Hernandez-Santana, Virginia, 2020. "Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 241(C).
    20. Fernández, J.E. & Torres-Ruiz, J.M. & Diaz-Espejo, A. & Montero, A. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Cuevas, M.V., 2011. "Use of maximum trunk diameter measurements to detect water stress in mature 'Arbequina' olive trees under deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(12), pages 1813-1821, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:171:y:2016:i:c:p:31-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.