IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v164y2016ip1p38-45.html
   My bibliography  Save this article

Limitations and usefulness of maximum daily shrinkage (MDS) and trunk growth rate (TGR) indicators in the irrigation scheduling of table olive trees

Author

Listed:
  • Girón, I.F.
  • Corell, M.
  • Martín-Palomo, M.J.
  • Galindo, A.
  • Torrecillas, A.
  • Moreno, F.
  • Moriana, A.

Abstract

Maximum daily trunk shrinkage (MDS) is the most popular indicator derived from trunk diameter fluctuations in most fruit trees and has been reported to be one of the earliest signs in the detection of water stress. However, in some species such as olive trees (Olea europaea L.), MDS does not usually change in water stress conditions and trunk growth rate (TGR) has been suggested as better indicator. Most of this lack of sensitivity to drought conditions has been related to the relationship between the MDS and the water potential. This curvilinear relationship produces an uncertain zone were great variations of water potential do not imply any changes of MDS. The MDS signal, the ratio between measured MDS and estimated MDS with full irrigation, has been thought to be a better indicator than MDS, as it reduces the effect of the environment.. On the other hand, though literature results suggest an effect of environment in TGR values, there are not clear relationship between this indicator and meteorological data. The aims of this work are, on one hand, to study the improvements of the baseline approach in the MDS signal and, on the other, study the influence of several meteorological variables in TGR. Three years’ data from an irrigation experiment were used in to carry out the MDS analysis and six years’ data for full irrigated trees during pit hardening period were used for TGR study. The comparison between MDS vs. water potential and MDS signal vs. water potential presented a great scattering in both relationships. Values of MDS signal between 1.1 and 1.4 were always identified with moderate water stress conditions (−1.4 to −2MPa of water potential). However, since this MDS signal values are around the maximum in the curvilineal relationship with water potential, greater values of MDS signal (in the range of 1.1–1.4) were not necessary lower values of water potential. In addition, during low fruit load seasons MDS signal was not an accurate indicator. On the other hand, absolute values of several climatological measurements were not significantly related with TGR. Only daily increments explain part of the variations of TGR in full irrigated trees. In all the data analysed, the daily increment of average vapour pressure deficit was the best indicator related with TGR. The increase of this indicator decreased TGR values. In addition, the agreement between this indicator and TGR was affected for fruit load. Great yield seasons decrease the influence of VPD increment in TGR.

Suggested Citation

  • Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Limitations and usefulness of maximum daily shrinkage (MDS) and trunk growth rate (TGR) indicators in the irrigation scheduling of table olive trees," Agricultural Water Management, Elsevier, vol. 164(P1), pages 38-45.
  • Handle: RePEc:eee:agiwat:v:164:y:2016:i:p1:p:38-45
    DOI: 10.1016/j.agwat.2015.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corell, M. & Girón, I.F. & Moriana, A. & Dell’Amico, J. & Morales, D. & Moreno, F., 2013. "Extrapolating base-line trunk shrinkage reference equations across olive orchards," Agricultural Water Management, Elsevier, vol. 126(C), pages 1-8.
    2. Fernández, J.E. & Torres-Ruiz, J.M. & Diaz-Espejo, A. & Montero, A. & Álvarez, R. & Jiménez, M.D. & Cuerva, J. & Cuevas, M.V., 2011. "Use of maximum trunk diameter measurements to detect water stress in mature 'Arbequina' olive trees under deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(12), pages 1813-1821, October.
    3. Moriana, A. & Moreno, F. & Girón, I.F. & Conejero, W. & Ortuño, M.F. & Morales, D. & Corell, M. & Torrecillas, A., 2011. "Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load," Agricultural Water Management, Elsevier, vol. 99(1), pages 121-127.
    4. Moriana, A. & Girón, I.F. & Martín-Palomo, M.J. & Conejero, W. & Ortuño, M.F. & Torrecillas, A. & Moreno, F., 2010. "New approach for olive trees irrigation scheduling using trunk diameter sensors," Agricultural Water Management, Elsevier, vol. 97(11), pages 1822-1828, November.
    5. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    6. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Blanco, Victor & Kalcsits, Lee, 2023. "Long-term validation of continuous measurements of trunk water potential and trunk diameter indicate different diurnal patterns for pear under water limitations," Agricultural Water Management, Elsevier, vol. 281(C).
    3. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    4. Li, Doudou & Fernández, José Enrique & Li, Xin & Xi, Benye & Jia, Liming & Hernandez-Santana, Virginia, 2020. "Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Corell, M. & Martín-Palomo, M.J. & Pérez-López, D. & Centeno, A. & Girón, I. & Moreno, F. & Torrecillas, A. & Moriana, A., 2017. "Approach for using trunk growth rate (TGR) in the irrigation scheduling of table olive orchards," Agricultural Water Management, Elsevier, vol. 192(C), pages 12-20.
    6. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    7. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    9. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    2. Pérez-López, D. & Pérez-Rodríguez, J.M. & Moreno, M.M. & Prieto, M.H. & Ramírez-Santa-Pau, M. & Gijón, M.C. & Guerrero, J. & Moriana, A., 2013. "Influence of different cultivars–locations on maximum daily shrinkage indicators: Limits to the reference baseline approach," Agricultural Water Management, Elsevier, vol. 127(C), pages 31-39.
    3. Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
    4. Corell, M. & Girón, I.F. & Galindo, A. & Torrecillas, A. & Torres-Sánchez, R. & Pérez-Pastor, A. & Moreno, F. & Moriana, A., 2014. "Using band dendrometers in irrigation scheduling," Agricultural Water Management, Elsevier, vol. 142(C), pages 29-37.
    5. Silber, A. & Naor, A. & Israeli, Y. & Assouline, S., 2013. "Combined effect of irrigation regime and fruit load on the patterns of trunk-diameter variation of ‘Hass’ avocado at different phenological periods," Agricultural Water Management, Elsevier, vol. 129(C), pages 87-94.
    6. Girón, I.F. & Corell, M. & Martín-Palomo, M.J. & Galindo, A. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees," Agricultural Water Management, Elsevier, vol. 161(C), pages 114-126.
    7. Corell, M. & Pérez-López, D. & Martín-Palomo, M.J. & Centeno, A. & Girón, I. & Galindo, A. & Moreno, M.M. & Moreno, C. & Memmi, H. & Torrecillas, A. & Moreno, F. & Moriana, A., 2016. "Comparison of the water potential baseline in different locations. Usefulness for irrigation scheduling of olive orchards," Agricultural Water Management, Elsevier, vol. 177(C), pages 308-316.
    8. Corell, M. & Martín-Palomo, M.J. & Pérez-López, D. & Centeno, A. & Girón, I. & Moreno, F. & Torrecillas, A. & Moriana, A., 2017. "Approach for using trunk growth rate (TGR) in the irrigation scheduling of table olive orchards," Agricultural Water Management, Elsevier, vol. 192(C), pages 12-20.
    9. Corell, M. & Martín-Palomo, M.J. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Approach using trunk growth rate data to identify water stress conditions in olive trees," Agricultural Water Management, Elsevier, vol. 222(C), pages 12-20.
    10. Fernández, J.E., 2014. "Plant-based sensing to monitor water stress: Applicability to commercial orchards," Agricultural Water Management, Elsevier, vol. 142(C), pages 99-109.
    11. Mirás-Avalos, José Manuel & Pérez-Sarmiento, Francisco & Alcobendas, Rosalía & Alarcón, Juan José & Mounzer, Oussama & Nicolás, Emilio, 2016. "Reference values of maximum daily trunk shrinkage for irrigation scheduling in mid-late maturing peach trees," Agricultural Water Management, Elsevier, vol. 171(C), pages 31-39.
    12. Corell, M. & Girón, I.F. & Moriana, A. & Dell’Amico, J. & Morales, D. & Moreno, F., 2013. "Extrapolating base-line trunk shrinkage reference equations across olive orchards," Agricultural Water Management, Elsevier, vol. 126(C), pages 1-8.
    13. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    14. Abdelfatah, Ashraf & Aranda, Xavier & Savé, Robert & de Herralde, Felicidad & Biel, Carmen, 2013. "Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse," Agricultural Water Management, Elsevier, vol. 118(C), pages 150-158.
    15. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    16. Moriana, A. & Moreno, F. & Girón, I.F. & Conejero, W. & Ortuño, M.F. & Morales, D. & Corell, M. & Torrecillas, A., 2011. "Seasonal changes of maximum daily shrinkage reference equations for irrigation scheduling in olive trees: Influence of fruit load," Agricultural Water Management, Elsevier, vol. 99(1), pages 121-127.
    17. Conesa, M.R. & Torres, R. & Domingo, R. & Navarro, H. & Soto, F. & Pérez-Pastor, A., 2016. "Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes," Agricultural Water Management, Elsevier, vol. 172(C), pages 51-61.
    18. Martín-Palomo, M.J. & Corell, M. & Andreu, L. & López-Moreno, Y.E. & Galindo, A. & Moriana, A., 2021. "Identification of water stress conditions in olive trees through frequencies of trunk growth rate," Agricultural Water Management, Elsevier, vol. 247(C).
    19. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernández, J.E., 2016. "Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements," Agricultural Water Management, Elsevier, vol. 164(P1), pages 28-37.
    20. Li, Doudou & Fernández, José Enrique & Li, Xin & Xi, Benye & Jia, Liming & Hernandez-Santana, Virginia, 2020. "Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:164:y:2016:i:p1:p:38-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.