IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v161y2015icp127-135.html
   My bibliography  Save this article

Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production

Author

Listed:
  • Alrajhi, A.
  • Beecham, S.
  • Bolan, Nanthi S.
  • Hassanli, A.

Abstract

Recycling of wastewater is becoming more popular in order to augment the inadequate irrigation supplies and meet the growing water demands for agriculture in arid regions of the world. This study investigated the environmental impact of deficit irrigation regimes on soil properties with five scenarios using recycled wastewater (RW), fresh tap water (FW), and a blend of RW and stormwater (BW). The five irrigation scenarios were applied to tomato plants growing in pots and included: (i) full irrigation (FI); (ii) partial root zone drying (PRD) irrigation at 75% of FI involving irrigation of only one part of the root zone, while the other part was exposed alternately to soil drying (PRD 75); (iii) PRD irrigation at 50% of FI (PRD 50); (iv) conventional deficit irrigation (DI) at 75% of FI applied on both sides of the root zone (DI 75); and (v) DI at 50% of FI (DI 50). Among the different irrigation scenarios, the PRD 75 treatment led to the lowest level of salinity for the surface soil layer. The PRD reduced TN in the soil compared with DI, while the water source significantly increased soil TN and TC with RW by 4% and 7%, respectively, compared with FW under FI. However, the irrigation scenarios and water sources did not show significant differences in the sodium absorption ratio (SAR), but PRD could reduce SAR compared with DI when using water with a high sodium concentration, such as RW.

Suggested Citation

  • Alrajhi, A. & Beecham, S. & Bolan, Nanthi S. & Hassanli, A., 2015. "Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production," Agricultural Water Management, Elsevier, vol. 161(C), pages 127-135.
  • Handle: RePEc:eee:agiwat:v:161:y:2015:i:c:p:127-135
    DOI: 10.1016/j.agwat.2015.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    3. Wang, Yaosheng & Liu, Fulai & Andersen, Mathias N. & Jensen, Christian R., 2010. "Carbon retention in the soil-plant system under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(3), pages 419-424, December.
    4. Dehghanisanij, H. & Agassi, M. & Anyoji, H. & Yamamoto, T. & Inoue, M. & Eneji, A.E., 2006. "Improvement of saline water use under drip irrigation system," Agricultural Water Management, Elsevier, vol. 85(3), pages 233-242, October.
    5. Díaz, Francisco J. & Tejedor, Marisa & Jiménez, Concepción & Grattan, Steve R. & Dorta, María & Hernández, José M., 2013. "The imprint of desalinated seawater on recycled wastewater: Consequences for irrigation in Lanzarote Island, Spain," Agricultural Water Management, Elsevier, vol. 116(C), pages 62-72.
    6. Muyen, Zahida & Moore, Graham A. & Wrigley, Roger J., 2011. "Soil salinity and sodicity effects of wastewater irrigation in South East Australia," Agricultural Water Management, Elsevier, vol. 99(1), pages 33-41.
    7. Aragüés, R. & Medina, E.T. & Martínez-Cob, A. & Faci, J., 2014. "Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid drip-irrigated peach orchard," Agricultural Water Management, Elsevier, vol. 142(C), pages 1-9.
    8. Toze, Simon, 2006. "Reuse of effluent water--benefits and risks," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 147-159, February.
    9. Aragüés, R. & Medina, E.T. & Clavería, I. & Martínez-Cob, A. & Faci, J., 2014. "Regulated deficit irrigation, soil salinization and soil sodification in a table grape vineyard drip-irrigated with moderately saline waters," Agricultural Water Management, Elsevier, vol. 134(C), pages 84-93.
    10. Mounzer, Oussama & Pedrero-Salcedo, Francisco & Nortes, Pedro A. & Bayona, José-Maria & Nicolás-Nicolás, Emilio & Alarcón, Juan José, 2013. "Transient soil salinity under the combined effect of reclaimed water and regulated deficit drip irrigation of Mandarin trees," Agricultural Water Management, Elsevier, vol. 120(C), pages 23-29.
    11. Leal, Rafael Marques Pereira & Herpin, Uwe & Fonseca, Adriel Ferreira da & Firme, Lilian Pittol & Montes, Célia Regina & Melfi, Adolpho José, 2009. "Sodicity and salinity in a Brazilian Oxisol cultivated with sugarcane irrigated with wastewater," Agricultural Water Management, Elsevier, vol. 96(2), pages 307-316, February.
    12. Yang, Lijuan & Qu, Hui & Zhang, Yulong & Li, Fusheng, 2012. "Effects of partial root-zone irrigation on physiology, fruit yield and quality and water use efficiency of tomato under different calcium levels," Agricultural Water Management, Elsevier, vol. 104(C), pages 89-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingchun Yang & Zijun Li & Chuan Xie & Ji Liang & Hongyun Ma, 2020. "Risk assessment of groundwater hydrochemistry for irrigation suitability in Ordos Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 309-325, March.
    2. Alrajhi, Abdullah & Beecham, Simon & Hassanli, Ali, 2017. "Effects of partial root-zone drying irrigation and water quality on soil physical and chemical properties," Agricultural Water Management, Elsevier, vol. 182(C), pages 117-125.
    3. Zhang, Jing & Chen, Ying Ying & Liu, Wen Hui & Guo, Zheng Gang, 2021. "Effect of alternate partial root-zone drying (PRD) on soil nitrogen availability to alfalfa," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Simhayov, Reuven & Ohana-Levi, Noa & Shenker, Moshe & Netzer, Yishai, 2023. "Effect of long-term treated wastewater irrigation on soil sodium levels and table grapevines' health," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz, Francisco J. & Tejedor, Marisa & Jiménez, Concepción & Grattan, Steve R. & Dorta, María & Hernández, José M., 2013. "The imprint of desalinated seawater on recycled wastewater: Consequences for irrigation in Lanzarote Island, Spain," Agricultural Water Management, Elsevier, vol. 116(C), pages 62-72.
    2. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    3. Cary, L. & Surdyk, N. & Psarras, G. & Kasapakis, I. & Chartzoulakis, K. & Sandei, L. & Guerrot, C. & Pettenati, M. & Kloppmann, W., 2015. "Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures," Agricultural Water Management, Elsevier, vol. 155(C), pages 87-99.
    4. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    5. Aragüés, R. & Medina, E.T. & Martínez-Cob, A. & Faci, J., 2014. "Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid drip-irrigated peach orchard," Agricultural Water Management, Elsevier, vol. 142(C), pages 1-9.
    6. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.
    7. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    8. Dorta-Santos, María & Tejedor, Marisa & Jiménez, Concepción & Hernández-Moreno, Jose M. & Díaz, Francisco J., 2016. "“Using marginal quality water for an energy crop in arid regions: Effect of salinity and boron distribution patterns”," Agricultural Water Management, Elsevier, vol. 171(C), pages 142-152.
    9. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    10. Garcia, X. & Pargament, D., 2015. "Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 154-166.
    11. Gorfie, Belihu Nigatu & Tuhar, Abraham Woldemichael & Keraga, Amare shiberu & Woldeyohannes, Aemiro Bezabih, 2022. "Effect of brewery wastewater irrigation on soil characteristics and lettuce (Lactuca sativa) crop in Ethiopia," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Pereira, B.F.F. & He, Z.L. & Stoffella, P.J. & Melfi, A.J., 2011. "Reclaimed wastewater: Effects on citrus nutrition," Agricultural Water Management, Elsevier, vol. 98(12), pages 1828-1833, October.
    13. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    14. Iñigo Virto & María José Imaz & Oihane Fernández-Ugalde & Nahia Gartzia-Bengoetxea & Alberto Enrique & Paloma Bescansa, 2014. "Soil Degradation and Soil Quality in Western Europe: Current Situation and Future Perspectives," Sustainability, MDPI, vol. 7(1), pages 1-53, December.
    15. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    16. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    17. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    18. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Echchelh, Alban & Hess, Tim & Sakrabani, Ruben, 2018. "Reusing oil and gas produced water for irrigation of food crops in drylands," Agricultural Water Management, Elsevier, vol. 206(C), pages 124-134.
    20. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:161:y:2015:i:c:p:127-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.