IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v196y2018icp1-14.html
   My bibliography  Save this article

Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions

Author

Listed:
  • Libutti, Angela
  • Gatta, Giuseppe
  • Gagliardi, Anna
  • Vergine, Pompilio
  • Pollice, Alfieri
  • Beneduce, Luciano
  • Disciglio, Grazia
  • Tarantino, Emanuele

Abstract

In many countries of the Mediterranean region, characterized by frequent drought periods, agricultural production often occurs under water deficiency or conditions that cause the depletion of the existing water resources. In these areas, the reuse of reclaimed wastewater for crop irrigation could contribute to mitigate/decrease water shortage, support the agriculture sector and protect groundwater resources. In 1.5-year field experiments in Southern Italy (Apulia Region), the effects of irrigation with treated agro-industrial wastewater on soil properties, crops yield and qualitative traits of crop products, including their microbiological safety, were assessed. Groundwater (GW), secondary treated wastewater (SW) and tertiary treated wastewater (TW) from an innovative “on-demand” UV disinfection system were used to irrigate tomato and broccoli, cultivated in succession. The three irrigation water sources and the corresponding irrigated soils, plants and crop products were analyzed for the main physico-chemical characteristics, quali-quantitative parameters and fecal indicators. SW and TW showed higher values of the main physico-chemical parameters than GW. SW irrigated soil resulted in a significant increase of NH4-N, Na+, SAR, EC (below the threshold value beyond which a soil is defined as saline) during the first tomato crop cycle, and of pH during the broccoli growing season. Irrigation with treated wastewater did not significantly affect the marketable yield nor the qualitative traits of tomato and broccoli crops, except for the Na+ and NO3− content (below the threshold levels defined by the European guidelines for vegetables). High levels of E. coli (above the Italian limit for reuse), Fecal coliforms and Fecal enterococci (up to 104 CFU 100ml−1) were observed in the SW and, when chlorination was not done, in the TW. Nevertheless, E. coli was not isolated from any sample of soil, plant and crop product, probably due to its rapid die-off. Moreover, low concentrations of Fecal coliforms and Total heterotrophic count were found in plant and crop product. The drip irrigation system used, which avoided the close contact between water and plant, may have contributed to this. Under the conditions applied in this study, the reuse of treated agro-industrial wastewater for irrigation can be considered an effective way to cope with agricultural water shortage in the Mediterranean area.

Suggested Citation

  • Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
  • Handle: RePEc:eee:agiwat:v:196:y:2018:i:c:p:1-14
    DOI: 10.1016/j.agwat.2017.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417303347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paranychianakis, N.V. & Nikolantonakis, M. & Spanakis, Y. & Angelakis, A.N., 2006. "The effect of recycled water on the nutrient status of Soultanina grapevines grafted on different rootstocks," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 185-198, March.
    2. Qadir, Manzoor & Wichelns, D & Raschid-Sally, Liqa & Minhas, P. S. & Drechsel, Pay & Bahri, Akissa & McCornick, Peter G. & Abaidoo, R. & Attia, F. & El-Guindy, S. & Ensink, J. H. J. & Jimenez, B. & Ki, 2007. "Agricultural use of marginal-quality water: opportunities and challenges," IWMI Books, Reports H040204, International Water Management Institute.
    3. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    4. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    5. Libutti, Angela & Monteleone, Massimo, 2017. "Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 186(C), pages 40-50.
    6. Cirelli, G.L. & Consoli, S. & Licciardello, F. & Aiello, R. & Giuffrida, F. & Leonardi, C., 2012. "Treated municipal wastewater reuse in vegetable production," Agricultural Water Management, Elsevier, vol. 104(C), pages 163-170.
    7. Kalavrouziotis, I.K. & Robolas, P. & Koukoulakis, P.H. & Papadopoulos, A.H., 2008. "Effects of municipal reclaimed wastewater on the macro- and micro-elements status of soil and of Brassica oleracea var. Italica, and B. oleracea var. Gemmifera," Agricultural Water Management, Elsevier, vol. 95(4), pages 419-426, April.
    8. Gloaguen, Thomas V. & Forti, M.-Cristina & Lucas, Yves & Montes, Celia R. & Goncalves, Roberta A.B. & Herpin, Uwe & Melfi, Adolpho J., 2007. "Soil solution chemistry of a Brazilian Oxisol irrigated with treated sewage effluent," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 119-131, March.
    9. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    10. Qadir, Manzoor & Wichelns, D. & Raschid-Sally, Liqa & Minhas, P. S. & Drechsel, Pay & Bahri, Akissa & McCornick, Peter G. & Abaidoo, Robert Clement & Attia, F. & El-Guindy, S. & Ensink, J. H. J. & Jim, 2007. "Agricultural use of marginal-quality water: opportunities and challenges," Book Chapters,, International Water Management Institute.
    11. Qadir, M. & Ghafoor, A. & Murtaza, G., 2001. "Use of saline-sodic waters through phytoremediation of calcareous saline-sodic soils," Agricultural Water Management, Elsevier, vol. 50(3), pages 197-210, September.
    12. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    13. Mahajan, Gulshan & Singh, K.G., 2006. "Response of Greenhouse tomato to irrigation and fertigation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 202-206, July.
    14. Agrafioti, Evita & Diamadopoulos, Evan, 2012. "A strategic plan for reuse of treated municipal wastewater for crop irrigation on the Island of Crete," Agricultural Water Management, Elsevier, vol. 105(C), pages 57-64.
    15. Toze, Simon, 2006. "Reuse of effluent water--benefits and risks," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 147-159, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuela Moreira da Silva & Flávia C. Resende & Bárbara Freitas & Jaime Aníbal & António Martins & Amílcar Duarte, 2022. "Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal—Environmental Benefits and Carbon Fluxes," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    2. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    3. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    4. Egbuikwem, Precious N. & Mierzwa, Jose C. & Saroj, Devendra P., 2020. "Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    6. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    7. Chojnacka, K. & Witek-Krowiak, A. & Moustakas, K. & Skrzypczak, D. & Mikula, K. & Loizidou, M., 2020. "A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    8. Andreas N. Angelakis & Mohammad Valipour & Abdelkader T. Ahmed & Vasileios Tzanakakis & Nikolaos V. Paranychianakis & Jens Krasilnikoff & Renato Drusiani & Larry Mays & Fatma El Gohary & Demetris Kout, 2021. "Water Conflicts: From Ancient to Modern Times and in the Future," Sustainability, MDPI, vol. 13(8), pages 1-31, April.
    9. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Mabasa, Nyiko C. & Jones, Clifford L.W. & Laing, Mark, 2021. "The use of treated brewery effluent for salt tolerant crop irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Sanjeet Mehariya & Rahul Kumar Goswami & Pradeep Verma & Roberto Lavecchia & Antonio Zuorro, 2021. "Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries," Energies, MDPI, vol. 14(8), pages 1-26, April.
    12. Gábor Gyarmati, 2024. "Transformation of the Three Pillars of Agri-Food Sustainability around the COVID-19 Crisis—A Literature Review," Sustainability, MDPI, vol. 16(13), pages 1-33, June.
    13. Schwaller, Christoph & Keller, Yvonne & Helmreich, Brigitte & Drewes, Jörg E., 2021. "Estimating the agricultural irrigation demand for planning of non-potable water reuse projects," Agricultural Water Management, Elsevier, vol. 244(C).
    14. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    15. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    16. Zhenjie Du & Shuang Zhao & Yingjun She & Yan Zhang & Jingjing Yuan & Shafeeq Ur Rahman & Xuebin Qi & Yue Xu & Ping Li, 2022. "Effects of Different Wastewater Irrigation on Soil Properties and Vegetable Productivity in the North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-13, July.
    17. González García, Mariano & Fernández-López, Carmen & Pedrero-Salcedo, Francisco & Alarcón, Juan Jose, 2018. "Absorption of carbamazepine and diclofenac in hydroponically cultivated lettuces and human health risk assessment," Agricultural Water Management, Elsevier, vol. 206(C), pages 42-47.
    18. Chethika Gunasiri Wadumestrige Dona & Geetha Mohan & Kensuke Fukushi, 2021. "Promoting Urban Agriculture and Its Opportunities and Challenges—A Global Review," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    19. Hashmat, Sherjeel & Shahid, Muhammad & Tanwir, Kashif & Abbas, Saghir & Ali, Qasim & Niazi, Nabeel Khan & Akram, Muhammad Sohail & Saleem, Muhammad Hamzah & Javed, Muhammad Tariq, 2021. "Elucidating distinct oxidative stress management, nutrient acquisition and yield responses of Pisum sativum L. fertigated with diluted and treated wastewater," Agricultural Water Management, Elsevier, vol. 247(C).
    20. Aliaa Dirani & Gumataw Kifle Abebe & Rachel A. Bahn & Giuliano Martiniello & Isam Bashour, 2021. "Exploring climate change adaptation practices and household food security in the Middle Eastern context: a case of small family farms in Central Bekaa, Lebanon," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(4), pages 1029-1047, August.
    21. Rossetto, Rudy & De Filippis, Giovanna & Triana, Federico & Ghetta, Matteo & Borsi, Iacopo & Schmid, Wolfgang, 2019. "Software tools for management of conjunctive use of surface- and ground-water in the rural environment: integration of the Farm Process and the Crop Growth Module in the FREEWAT platform," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    22. Everald Mclennon & Juan K. Q. Solomon & Jason Davison, 2020. "Grass–Legume Forage Systems Effect on Phosphorus Removal from a Grassland Historically Irrigated with Reclaimed Wastewater," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    23. Odone, Giordano & Perulli, Giulio Demetrio & Mancuso, Giuseppe & Lavrnić, Stevo & Toscano, Attilio, 2024. "A novel smart fertigation system for irrigation with treated wastewater: Effects on nutrient recovery, crop and soil," Agricultural Water Management, Elsevier, vol. 297(C).
    24. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    2. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    3. Marofi, Safar & Shakarami, Masoud & Rahimi, Ghasem & Ershadfath, Farnaz, 2015. "Effect of wastewater and compost on leaching nutrients of soil column under basil cultivation," Agricultural Water Management, Elsevier, vol. 158(C), pages 266-276.
    4. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.
    5. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    6. Odone, Giordano & Perulli, Giulio Demetrio & Mancuso, Giuseppe & Lavrnić, Stevo & Toscano, Attilio, 2024. "A novel smart fertigation system for irrigation with treated wastewater: Effects on nutrient recovery, crop and soil," Agricultural Water Management, Elsevier, vol. 297(C).
    7. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    8. Zema, Demetrio Antonio & Bombino, Giuseppe & Andiloro, Serafina & Zimbone, Santo Marcello, 2012. "Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values," Agricultural Water Management, Elsevier, vol. 115(C), pages 55-65.
    9. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    10. Qadir, M. & Wichelns, D. & Raschid-Sally, L. & McCornick, P.G. & Drechsel, P. & Bahri, A. & Minhas, P.S., 2010. "The challenges of wastewater irrigation in developing countries," Agricultural Water Management, Elsevier, vol. 97(4), pages 561-568, April.
    11. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    12. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Carmelo Maucieri & Valeria Cavallaro & Caterina Caruso & Maurizio Borin & Mirco Milani & Antonio C. Barbera, 2016. "Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment," Agriculture, MDPI, vol. 6(4), pages 1-15, December.
    14. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    15. Almuktar, S.A.A.A.N. & Scholz, M. & Al-Isawi, R.H.K. & Sani, A., 2015. "Recycling of domestic wastewater treated by vertical-flow wetlands for irrigating Chillies and Sweet Peppers," Agricultural Water Management, Elsevier, vol. 149(C), pages 1-22.
    16. Al-Absi, K.M. & Al-Nasir, F.M. & Mahadeen, A.Y., 2009. "Mineral content of three olive cultivars irrigated with treated industrial wastewater," Agricultural Water Management, Elsevier, vol. 96(4), pages 616-626, April.
    17. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    18. Mabasa, Nyiko C. & Jones, Clifford L.W. & Laing, Mark, 2021. "The use of treated brewery effluent for salt tolerant crop irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    19. Winfrida Mayilla & Bernard Keraita & Helena Ngowi & Flemming Konradsen & Flavianus Magayane, 2017. "Perceptions of using low-quality irrigation water in vegetable production in Morogoro, Tanzania," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 165-183, February.
    20. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:196:y:2018:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.