IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v304y2024ics0378377424004049.html
   My bibliography  Save this article

Impact of regulated deficit irrigation on the dynamics of quality changes in processing tomato fruits during ripening

Author

Listed:
  • Xu, Jing
  • Li, Xiaofang
  • Wan, Wenliang
  • Zhu, Xiaoling
  • Li, Changhong
  • Zhao, Xiaowen
  • Zhao, Yanhui
  • Pang, Shenqun
  • Diao, Ming

Abstract

Quality is a key factor restricting the development and economic benefits of the tomato processing industry, and improving the quality of tomatoes has become a hotspot in the development of the tomato processing industry in Xinjiang. Regulated deficit irrigation (RDI) is an abiotic means of crop yield and quality control widely used for crop yield and quality improvement. This study aimed to investigate the impact of RDI on the dynamics of quality changes in processing tomato fruits during ripening via a 2-year (2022–2023) filed experiment with five water irrigation treatments in Xinjiang, China. The results showed that compared with conventional irrigation, regulated deficit irrigation significantly saved 315–1260 m3 ha−1 irrigation water. Mild RDI increased the single fruit weight and fruit hardness by 0.15 % and 3.29 kg cm2, respectively, thus improved the yield and storage and transportation quality of processed tomatoes. Moderate RDI increased the contents of soluble solid, soluble sugar and lycopene in fruit to 0.6 %, 0.56 % and 3.53 μg/g, respectively, therefore significantly improved the nutritional quality and flavor quality of processed tomato. Ultimately, a comprehensive evaluation using a coupled Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) model, taking into account the appearance, nutrition, flavor, and storage and transportation indexes of processed fruits, concluded tha W1 treatment is a sustainable water management approach that balances yield and quality. Therefore, the optimal deficit irrigation model for processing tomato fruits in Xinjiang was recommended to be the W1 treatment, whereas the W2 treatment was considered as an alternate model. The study supported the large-scale development of the tomato processing industry in Xinjiang and the implementation of effective water-saving farming.

Suggested Citation

  • Xu, Jing & Li, Xiaofang & Wan, Wenliang & Zhu, Xiaoling & Li, Changhong & Zhao, Xiaowen & Zhao, Yanhui & Pang, Shenqun & Diao, Ming, 2024. "Impact of regulated deficit irrigation on the dynamics of quality changes in processing tomato fruits during ripening," Agricultural Water Management, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004049
    DOI: 10.1016/j.agwat.2024.109068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Waqas, Muhammad Sohail & Cheema, Muhammad Jehanzeb Masud & Hussain, Saddam & Ullah, Muhammad Kaleem & Iqbal, Muhammad Mazhar, 2021. "Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
    3. Coyago-Cruz, Elena & Meléndez-Martínez, Antonio J. & Moriana, Alfonso & Girón, Ignacio F. & Martín-Palomo, María José & Galindo, Alejandro & Pérez-López, David & Torrecillas, Arturo & Beltrán-Sinchigu, 2019. "Yield response to regulated deficit irrigation of greenhouse cherry tomatoes," Agricultural Water Management, Elsevier, vol. 213(C), pages 212-221.
    4. Martínez-Romero, A. & Domínguez, A. & Landeras, G., 2019. "Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 164-176.
    5. Wang, Feng & Kang, Shaozhong & Du, Taisheng & Li, Fusheng & Qiu, Rangjian, 2011. "Determination of comprehensive quality index for tomato and its response to different irrigation treatments," Agricultural Water Management, Elsevier, vol. 98(8), pages 1228-1238, May.
    6. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    7. Wang, Zeyi & Yu, Shouchao & Zhang, Hengjia & Lei, Lian & Liang, Chao & Chen, Lili & Su, Dandan & Li, Xuan, 2023. "Deficit mulched drip irrigation improves yield, quality, and water use efficiency of watermelon in a desert oasis region," Agricultural Water Management, Elsevier, vol. 277(C).
    8. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    9. Alrajhi, A. & Beecham, S. & Bolan, Nanthi S. & Hassanli, A., 2015. "Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production," Agricultural Water Management, Elsevier, vol. 161(C), pages 127-135.
    10. Lingfeng Shen & Chenfei Zhang & Yahui Xia & Shasha Yang & Tian Chang & Saleem Ullah & Xuehua Ji, 2024. "Transcript Analysis Reveals Positive Regulation of CA12g04950 on Carotenoids of Pigment Pepper Fruit under Nitrogen Reduction," Agriculture, MDPI, vol. 14(4), pages 1-20, March.
    11. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    12. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    13. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    14. Wang, D. & Gartung, J., 2010. "Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation," Agricultural Water Management, Elsevier, vol. 97(11), pages 1787-1794, November.
    15. Leontina Lipan & Hanán Issa-Issa & Alfonso Moriana & Noemí Medina Zurita & Alejandro Galindo & María José Martín-Palomo & Luis Andreu & Ángel A. Carbonell-Barrachina & Francisca Hernández & Mireia Cor, 2021. "Scheduling Regulated Deficit Irrigation with Leaf Water Potential of Cherry Tomato in Greenhouse and its Effect on Fruit Quality," Agriculture, MDPI, vol. 11(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Li, Bo & Wim, Voogt & Shukla, Manoj Kumar & Du, Taisheng, 2021. "Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    7. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    8. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    9. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    10. Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
    11. He, Zhihao & Li, Manning & Cai, Zelin & Zhao, Rongsheng & Hong, Tingting & Yang, Zhi & Zhang, Zhi, 2021. "Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    13. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Xufeng Li & Juanjuan Ma & Lijian Zheng & Jinping Chen & Xihuan Sun & Xianghong Guo, 2022. "Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
    15. Sun, Lei & Li, Bo & Yao, Mingze & Niu, Dongshuang & Gao, Manman & Mao, Lizhen & Xu, Zhanyang & Wang, Tieliang & Wang, Jingkuan, 2023. "Optimising water and nitrogen management for greenhouse tomatoes in Northeast China using EWM−TOPSIS−AISM model," Agricultural Water Management, Elsevier, vol. 290(C).
    16. Du, Ya-Dan & Niu, Wen-Quan & Gu, Xiao-Bo & Zhang, Qian & Cui, Bing-Jing, 2018. "Water- and nitrogen-saving potentials in tomato production: A meta-analysis," Agricultural Water Management, Elsevier, vol. 210(C), pages 296-303.
    17. Rosa Francaviglia & Claudia Di Bene, 2019. "Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy," Agriculture, MDPI, vol. 9(4), pages 1-14, April.
    18. Li, Cheng & Luo, Xiaoqi & Wang, Naijiang & Wu, Wenjie & Li, Yue & Quan, Hao & Zhang, Tibin & Ding, Dianyuan & Dong, Qin’ge & Feng, Hao, 2022. "Transparent plastic film combined with deficit irrigation improves hydrothermal status of the soil-crop system and spring maize growth in arid areas," Agricultural Water Management, Elsevier, vol. 265(C).
    19. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).
    20. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.