IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v300y2015icp12-29.html
   My bibliography  Save this article

Proposed best modeling practices for assessing the effects of ecosystem restoration on fish

Author

Listed:
  • Rose, Kenneth A.
  • Sable, Shaye
  • DeAngelis, Donald L.
  • Yurek, Simeon
  • Trexler, Joel C.
  • Graf, William
  • Reed, Denise J.

Abstract

Large-scale aquatic ecosystem restoration is increasing and is often controversial because of the economic costs involved, with the focus of the controversies gravitating to the modeling of fish responses. We present a scheme for best practices in selecting, implementing, interpreting, and reporting of fish modeling designed to assess the effects of restoration actions on fish populations and aquatic food webs. Previous best practice schemes that tended to be more general are summarized, and they form the foundation for our scheme that is specifically tailored for fish and restoration. We then present a 31-step scheme, with supporting text and narrative for each step, which goes from understanding how the results will be used through post-auditing to ensure the approach is used effectively in subsequent applications. We also describe 13 concepts that need to be considered in parallel to these best practice steps. Examples of these concepts include: life cycles and strategies; variability and uncertainty; nonequilibrium theory; biological, temporal, and spatial scaling; explicit versus implicit representation of processes; and model validation. These concepts are often not considered or not explicitly stated and casual treatment of them leads to mis-communication and mis-understandings, which in turn, often underlie the resulting controversies. We illustrate a subset of these steps, and their associated concepts, using the three case studies of Glen Canyon Dam on the Colorado River, the wetlands of coastal Louisiana, and the Everglades. Use of our proposed scheme will require investment of additional time and effort (and dollars) to be done effectively. We argue that such an investment is well worth it and will more than pay back in the long run in effective and efficient restoration actions and likely avoided controversies and legal proceedings.

Suggested Citation

  • Rose, Kenneth A. & Sable, Shaye & DeAngelis, Donald L. & Yurek, Simeon & Trexler, Joel C. & Graf, William & Reed, Denise J., 2015. "Proposed best modeling practices for assessing the effects of ecosystem restoration on fish," Ecological Modelling, Elsevier, vol. 300(C), pages 12-29.
  • Handle: RePEc:eee:ecomod:v:300:y:2015:i:c:p:12-29
    DOI: 10.1016/j.ecolmodel.2014.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014006334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yurek, Simeon & DeAngelis, Donald L. & Trexler, Joel C. & Jopp, Fred & Donalson, Douglas D., 2013. "Simulating mechanisms for dispersal, production and stranding of small forage fish in temporary wetland habitats," Ecological Modelling, Elsevier, vol. 250(C), pages 391-401.
    2. Rose, Kenneth A. & Megrey, Bernard A. & Werner, Francisco E. & Ware, Dan M., 2007. "Calibration of the NEMURO nutrient–phytoplankton–zooplankton food web model to a coastal ecosystem: Evaluation of an automated calibration approach," Ecological Modelling, Elsevier, vol. 202(1), pages 38-51.
    3. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Mutsert, Kim & Lewis, Kristy & Milroy, Scott & Buszowski, Joe & Steenbeek, Jeroen, 2017. "Using ecosystem modeling to evaluate trade-offs in coastal management: Effects of large-scale river diversions on fish and fisheries," Ecological Modelling, Elsevier, vol. 360(C), pages 14-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Sanchis, Marí a & Del Campo, Antonio D. & Molina, Antonio J. & Fernandes, Tarcí sio J.G., 2015. "Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation," Ecological Modelling, Elsevier, vol. 308(C), pages 34-44.
    2. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    3. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    4. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Miehls, Andrea L. Jaeger & Mason, Doran M. & Frank, Kenneth A. & Krause, Ann E. & Peacor, Scott D. & Taylor, William W., 2009. "Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion," Ecological Modelling, Elsevier, vol. 220(22), pages 3182-3193.
    6. Christopher C Wilmers & Wayne M Getz, 2005. "Gray Wolves as Climate Change Buffers in Yellowstone," PLOS Biology, Public Library of Science, vol. 3(4), pages 1-1, March.
    7. Scotti, Marco & Bondavalli, Cristina & Bodini, Antonio, 2009. "Linking trophic positions and flow structure constraints in ecological networks: Energy transfer efficiency or topology effect?," Ecological Modelling, Elsevier, vol. 220(21), pages 3070-3080.
    8. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Hartvig, Martin & Andersen, Ken Haste, 2013. "Coexistence of structured populations with size-based prey selection," Theoretical Population Biology, Elsevier, vol. 89(C), pages 24-33.
    10. Yacine, Youssef & Loeuille, Nicolas, 2022. "Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions," Ecological Modelling, Elsevier, vol. 465(C).
    11. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    12. Perc, Matjaž, 2007. "Effects of small-world connectivity on noise-induced temporal and spatial order in neural media," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 280-291.
    13. Chang, Feng-Hsun & Ke, Po-Ju & Cardinale, Bradley, 2020. "Weak intra-guild predation facilitates consumer coexistence but does not guarantee higher consumer density," Ecological Modelling, Elsevier, vol. 424(C).
    14. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    15. Wang, Shuran Cindy & Liu, Xueqin & Liu, Yong & Wang, Hongzhu, 2020. "Benthic-pelagic coupling in lake energetic food webs," Ecological Modelling, Elsevier, vol. 417(C).
    16. Malone, R.W. & Nolan, B.T. & Ma, L. & Kanwar, R.S. & Pederson, C. & Heilman, P., 2014. "Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study," Agricultural Water Management, Elsevier, vol. 132(C), pages 10-22.
    17. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    18. Kishi, Michio J. & Kashiwai, Makoto & Ware, Daniel M. & Megrey, Bernard A. & Eslinger, David L. & Werner, Francisco E. & Noguchi-Aita, Maki & Azumaya, Tomonori & Fujii, Masahiko & Hashimoto, Shinji & , 2007. "NEMURO—a lower trophic level model for the North Pacific marine ecosystem," Ecological Modelling, Elsevier, vol. 202(1), pages 12-25.
    19. Ross, Karen A. & Bedward, Michael & Ellis, Murray V. & Deane, Andrew & Simpson, Christopher C. & Bradstock, Ross A., 2008. "Modelling the dynamics of white cypress pine Callitris glaucophylla woodlands in inland south-eastern Australia," Ecological Modelling, Elsevier, vol. 211(1), pages 11-24.
    20. Md Sayeed Anwar & Dibakar Ghosh & Nikita Frolov, 2021. "Relay Synchronization in a Weighted Triplex Network," Mathematics, MDPI, vol. 9(17), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:300:y:2015:i:c:p:12-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.