IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v308y2015icp34-44.html
   My bibliography  Save this article

Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation

Author

Listed:
  • González-Sanchis, Marí a
  • Del Campo, Antonio D.
  • Molina, Antonio J.
  • Fernandes, Tarcí sio J.G.

Abstract

Adaptive forest management (AFM) aims to adapt a forest to water availability by means of an artificial regulation of the forest structure and density. Areas vulnerable to water scarcity situations, such as the Mediterranean region, might require AFM to optimize the hydrological cycle under normal and future global change conditions. This study uses the process based model (PBM) BIOME-BGC to predict the effects of AFM in an unmanaged semi-arid Mediterranean Aleppo pine plantation. At the same time, it seeking to increase the spatially explicit information to initialize the model runs. To this end, the model has been slightly modified, and canopy average specific leaf area and canopy water interception coefficient have both been introduced as functions of canopy coverage, which was obtained using airborne laser scanning (LiDAR) technology. The model was then calibrated and evaluated using sap flow, soil moisture and throughfall field data obtained during one year from three forest coverages (85, 73 and 26%, respectively). Calibration and evaluation of the model show acceptable accuracy, with the Nash–Sutcliffe coefficient ranging between 0.39 and 0.76 for calibration and 0.35 and 0.75 for evaluation. The model was then applied to analyze and predict the need for forest management in a Mediterranean public forest indicated a possible optimization of the hydrological cycle to establish a new equilibrium between blue and green water. This new scenario reduced water interception and plant transpiration (green water), and increased water runoff and/or percolation (blue water).

Suggested Citation

  • González-Sanchis, Marí a & Del Campo, Antonio D. & Molina, Antonio J. & Fernandes, Tarcí sio J.G., 2015. "Modeling adaptive forest management of a semi-arid Mediterranean Aleppo pine plantation," Ecological Modelling, Elsevier, vol. 308(C), pages 34-44.
  • Handle: RePEc:eee:ecomod:v:308:y:2015:i:c:p:34-44
    DOI: 10.1016/j.ecolmodel.2015.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015001325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tatarinov, Fyodor A. & Cienciala, Emil, 2009. "Long-term simulation of the effect of climate changes on the growth of main Central-European forest tree species," Ecological Modelling, Elsevier, vol. 220(21), pages 3081-3088.
    2. Maselli, F. & Chiesi, M. & Moriondo, M. & Fibbi, L. & Bindi, M. & Running, S.W., 2009. "Modelling the forest carbon budget of a Mediterranean region through the integration of ground and satellite data," Ecological Modelling, Elsevier, vol. 220(3), pages 330-342.
    3. Rose, Kenneth A. & Megrey, Bernard A. & Werner, Francisco E. & Ware, Dan M., 2007. "Calibration of the NEMURO nutrient–phytoplankton–zooplankton food web model to a coastal ecosystem: Evaluation of an automated calibration approach," Ecological Modelling, Elsevier, vol. 202(1), pages 38-51.
    4. Chiesi, M. & Maselli, F. & Moriondo, M. & Fibbi, L. & Bindi, M. & Running, S.W., 2007. "Application of BIOME-BGC to simulate Mediterranean forest processes," Ecological Modelling, Elsevier, vol. 206(1), pages 179-190.
    5. Bellot, Juan & Chirino, Esteban, 2013. "Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas," Ecological Modelling, Elsevier, vol. 266(C), pages 30-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Collalti, Alessio & Perugini, Lucia & Santini, Monia & Chiti, Tommaso & Nolè, Angelo & Matteucci, Giorgio & Valentini, Riccardo, 2014. "A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy," Ecological Modelling, Elsevier, vol. 272(C), pages 362-378.
    2. Ruiz-Pérez, G. & González-Sanchis, M. & Del Campo, A.D. & Francés, F., 2016. "Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments?," Ecological Modelling, Elsevier, vol. 324(C), pages 45-53.
    3. Chaobin Zhang & Ying Zhang & Jianlong Li, 2019. "Grassland Productivity Response to Climate Change in the Hulunbuir Steppes of China," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    4. Maselli, F. & Vaccari, F.P. & Chiesi, M. & Romanelli, S. & D’Acqui, L.P., 2017. "Modelling and analyzing the water and carbon dynamics of Mediterranean macchia by the use of ground and remote sensing data," Ecological Modelling, Elsevier, vol. 351(C), pages 1-13.
    5. Maselli, Fabio & Chiesi, Marta & Brilli, Lorenzo & Moriondo, Marco, 2012. "Simulation of olive fruit yield in Tuscany through the integration of remote sensing and ground data," Ecological Modelling, Elsevier, vol. 244(C), pages 1-12.
    6. Diana Turrión & Luna Morcillo & José Antonio Alloza & Alberto Vilagrosa, 2021. "Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    7. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    8. Wang, Qinying & He, Hong S. & Liu, Kai & Zong, Shengwei & Du, Haibo, 2023. "Comparing simulated tree biomass from daily, monthly, and seasonal climate input of terrestrial ecosystem model," Ecological Modelling, Elsevier, vol. 483(C).
    9. Ma, Shaoxiu & Churkina, Galina & Wieland, Ralf & Gessler, Arthur, 2011. "Optimization and evaluation of the ANTHRO-BGC model for winter crops in Europe," Ecological Modelling, Elsevier, vol. 222(20), pages 3662-3679.
    10. Rose, Kenneth A. & Sable, Shaye & DeAngelis, Donald L. & Yurek, Simeon & Trexler, Joel C. & Graf, William & Reed, Denise J., 2015. "Proposed best modeling practices for assessing the effects of ecosystem restoration on fish," Ecological Modelling, Elsevier, vol. 300(C), pages 12-29.
    11. Malone, R.W. & Nolan, B.T. & Ma, L. & Kanwar, R.S. & Pederson, C. & Heilman, P., 2014. "Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study," Agricultural Water Management, Elsevier, vol. 132(C), pages 10-22.
    12. Kishi, Michio J. & Kashiwai, Makoto & Ware, Daniel M. & Megrey, Bernard A. & Eslinger, David L. & Werner, Francisco E. & Noguchi-Aita, Maki & Azumaya, Tomonori & Fujii, Masahiko & Hashimoto, Shinji & , 2007. "NEMURO—a lower trophic level model for the North Pacific marine ecosystem," Ecological Modelling, Elsevier, vol. 202(1), pages 12-25.
    13. Maša Zorana Ostrogović Sever & Zoltán Barcza & Dóra Hidy & Anikó Kern & Doroteja Dimoski & Slobodan Miko & Ozren Hasan & Branka Grahovac & Hrvoje Marjanović, 2021. "Evaluation of the Terrestrial Ecosystem Model Biome-BGCMuSo for Modelling Soil Organic Carbon under Different Land Uses," Land, MDPI, vol. 10(9), pages 1-23, September.
    14. Ross, Karen A. & Bedward, Michael & Ellis, Murray V. & Deane, Andrew & Simpson, Christopher C. & Bradstock, Ross A., 2008. "Modelling the dynamics of white cypress pine Callitris glaucophylla woodlands in inland south-eastern Australia," Ecological Modelling, Elsevier, vol. 211(1), pages 11-24.
    15. Puertes, Cristina & González-Sanchis, María & Lidón, Antonio & Bautista, Inmaculada & del Campo, Antonio D. & Lull, Cristina & Francés, Félix, 2020. "Improving the modelling and understanding of carbon-nitrogen-water interactions in a semiarid Mediterranean oak forest," Ecological Modelling, Elsevier, vol. 420(C).
    16. Mattia Cai & Roberto Ferrise & Marco Moriondo & Paulo A.L.D. Nunes & Marco Bindi, 2011. "Climate Change and Tourism in Tuscany, Italy. What if heat becomes unbearable?," Working Papers 2011.67, Fondazione Eni Enrico Mattei.
    17. Rose, Kenneth A. & Werner, Francisco E. & Megrey, Bernard A. & Aita, Maki Noguchi & Yamanaka, Yasuhiro & Hay, Douglas E. & Schweigert, Jake F. & Foster, Matthew Birch, 2007. "Simulated herring growth responses in the Northeastern Pacific to historic temperature and zooplankton conditions generated by the 3-dimensional NEMURO nutrient–phytoplankton–zooplankton model," Ecological Modelling, Elsevier, vol. 202(1), pages 184-195.
    18. José Alberto Redondo-Orts & María Inmaculada López-Ortiz & Patricia Fernández-Aracil, 2023. "Integrated Management to Address Structural Shortage: The Case of Vega Baja of the Segura River, Alicante (Southeast Spain)," Sustainability, MDPI, vol. 15(9), pages 1-30, April.
    19. Bracis, Chloe & Lehuta, Sigrid & Savina-Rolland, Marie & Travers-Trolet, Morgane & Girardin, Raphaël, 2020. "Improving confidence in complex ecosystem models: The sensitivity analysis of an Atlantis ecosystem model," Ecological Modelling, Elsevier, vol. 431(C).
    20. Chen, Shilei & Huo, Zailin & Xu, Xu & Huang, Guanhua, 2019. "A conceptual agricultural water productivity model considering under field capacity soil water redistribution applicable for arid and semi-arid areas with deep groundwater," Agricultural Water Management, Elsevier, vol. 213(C), pages 309-323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:308:y:2015:i:c:p:34-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.