IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v126y2013icp125-132.html
   My bibliography  Save this article

Technical considerations affecting adoption of drip irrigation in sub-Saharan Africa

Author

Listed:
  • Friedlander, Lonia
  • Tal, Alon
  • Lazarovitch, Naftali

Abstract

Global water supplies are limited and will be increasingly strained as a result of global warming and increased agricultural demands. Drip irrigation can reliably provide increased yield and water use efficiency, yet its adoption in many food-insecure countries is negligible or less than 1% of total cultivated land. Failed technology transfer attempts are especially apparent in many African countries, despite a variety of promotion efforts. We explore the factors that influence successful drip irrigation adoption. Unlike previous studies, we focus on technical malfunctions and the array of difficulties that farmers may experience with their drip systems and their responses to these problems. By considering different farm types and four countries together, our results offer a broad perspective on the general trends and common problems among African drip users. We interviewed 61 drip irrigation adopters and analyzed their responses for statistically significant association with successful adoption. All respondents experienced a wide variety of technical difficulties with their systems. We also found that certain, very specific difficulties were good predictors of future drip irrigation abandonment. These include, water storage problems and problems with destructive wildlife. We make the following recommendations to drip irrigation promoters. (1) Redesign drip systems to help prevent common problems. (2) Invest in clear education for adopters, focusing on maintenance and repairs. (3) Encourage the adoption of complementary technologies to support the functioning of drip systems, such as water storage, purification and delivery systems, and defenses against animals.

Suggested Citation

  • Friedlander, Lonia & Tal, Alon & Lazarovitch, Naftali, 2013. "Technical considerations affecting adoption of drip irrigation in sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 126(C), pages 125-132.
  • Handle: RePEc:eee:agiwat:v:126:y:2013:i:c:p:125-132
    DOI: 10.1016/j.agwat.2013.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741300111X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibragimov, Nazirbay & Evett, Steven R. & Esanbekov, Yusupbek & Kamilov, Bakhtiyor S. & Mirzaev, Lutfullo & Lamers, John P.A., 2007. "Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 112-120, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas, Graeme & Srinivasan, MS & Beechener, Sam & Foote, Jeff & Robson-Williams, Melissa & FitzHerbert, Stephen, 2020. "Transferring the impacts of pilot-scale studies to other scales: Understanding the role of non-biophysical factors using field-based irrigation studies," Agricultural Water Management, Elsevier, vol. 233(C).
    2. Alonso, A. & Feltz, N. & Gaspart, F. & Sbaa, M. & Vanclooster, M., 2019. "Comparative assessment of irrigation systems’ performance: Case study in the Triffa agricultural district, NE Morocco," Agricultural Water Management, Elsevier, vol. 212(C), pages 338-348.
    3. Garb, Yaakov & Friedlander, Lonia, 2014. "From transfer to translation: Using systemic understandings of technology to understand drip irrigation uptake," Agricultural Systems, Elsevier, vol. 128(C), pages 13-24.
    4. Grant, Fiona & Sheline, Carolyn & Sokol, Julia & Amrose, Susan & Brownell, Elizabeth & Nangia, Vinay & Winter, Amos G., 2022. "Creating a Solar-Powered Drip Irrigation Optimal Performance model (SDrOP) to lower the cost of drip irrigation systems for smallholder farmers," Applied Energy, Elsevier, vol. 323(C).
    5. Amadou Keita & Dial Niang & Sibri Alphonse Sandwidi, 2022. "How Non-Governmental-Organization-Built Small-Scale Irrigation Systems Are a Failure in Africa," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    6. Mwaura, Francis M. & Muwanika, Fred R., 2018. "Providing irrigation water as a public utility to enhance agricultural productivity in Uganda," Utilities Policy, Elsevier, vol. 55(C), pages 99-109.
    7. Masoud Yazdanpanah & Kurt Klein & Tahereh Zobeidi & Stefan Sieber & Katharina Löhr, 2022. "Why Have Economic Incentives Failed to Convince Farmers to Adopt Drip Irrigation in Southwestern Iran?," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
    8. Morey Burnham & Zhao Ma & Delan Zhu, 2015. "The human dimensions of water saving irrigation: lessons learned from Chinese smallholder farmers," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 347-360, June.
    9. Venot, Jean-Philippe, 2016. "A Success of Some Sort: Social Enterprises and Drip Irrigation in the Developing World," World Development, Elsevier, vol. 79(C), pages 69-81.
    10. Daniele Mozzato & Paola Gatto & Edi Defrancesco & Lucia Bortolini & Francesco Pirotti & Elena Pisani & Luigi Sartori, 2018. "The Role of Factors Affecting the Adoption of Environmentally Friendly Farming Practices: Can Geographical Context and Time Explain the Differences Emerging from Literature?," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    11. Imran Sajid & Bernhard Tischbein & Christian Borgemeister & Martina Flörke, 2022. "Assessing Barriers in Adaptation of Water Management Innovations under Rotational Canal Water Distribution System," Agriculture, MDPI, vol. 12(7), pages 1-16, June.
    12. Srinivasan, M.S. & Jongmans, C. & Bewsell, D. & Elley, G., 2019. "Research idea to science for impact: Tracing the significant moments in an innovation based irrigation study," Agricultural Water Management, Elsevier, vol. 212(C), pages 181-192.
    13. Grabowski, Philip & Schmitt Olabisi, Laura & Adebiyi, Jelili & Waldman, Kurt & Richardson, Robert & Rusinamhodzi, Leonard & Snapp, Sieglinde, 2019. "Assessing adoption potential in a risky environment: The case of perennial pigeonpea," Agricultural Systems, Elsevier, vol. 171(C), pages 89-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenjabaev, Shavkat & Forkutsa, I. & Bach, M. & Frede, H.-G., 2013. "Performance evaluation of the BUDGET model in simulating cotton and wheat yield and soil moisture in Fergana valley," International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building 159114, University of Giessen (JLU Giessen), Center for International Development and Environmental Research.
    2. Ping Wang & Zhenyong Zhao & Lei Wang & Changyan Tian, 2021. "Comparison of Efficiency-Enhanced Management and Conventional Management of Irrigation and Nitrogen Fertilization in Cotton Fields of Northwestern China," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    3. Fan, Yubing & McCann, Laura M., 2017. "Farmers’ Adoption of Pressure Irrigation Systems and Scientific Scheduling Practices: An Application of Multilevel Models," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258458, Agricultural and Applied Economics Association.
    4. Pongspikul, Tayatorn & McCann, Laura M., 2020. "Farmers’ Adoption of Pressure Irrigation Systems: The Case of Cotton Producers in the Southeastern versus Southwestern U.S," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304332, Agricultural and Applied Economics Association.
    5. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    6. Ünlü, Mustafa & Kanber, RIza & Koç, D. Levent & Tekin, Servet & Kapur, Burçak, 2011. "Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a mediterranean environment," Agricultural Water Management, Elsevier, vol. 98(4), pages 597-605, February.
    7. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    8. Burak, Selmin & Samanlioglu, Funda & Ülker, Duygu, 2022. "Evaluation of irrigation methods in Söke Plain with HF-AHP-PROMETHEE II hybrid MCDM method," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Han, Shumin & Xin, Ping & Li, Huilong & Yang, Yonghui, 2022. "Evolution of agricultural development and land-water-food nexus in Central Asia," Agricultural Water Management, Elsevier, vol. 273(C).
    10. Shareef, Muhammad & Gui, Dongwei & Zeng, Fanjiang & Waqas, Muhammad & Zhang, Bo & Iqbal, Hassan, 2018. "Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China," Agricultural Water Management, Elsevier, vol. 206(C), pages 1-10.
    11. do Amaral, Marcos Antonio Correa Matos & Coelho, Rubens Duarte & de Oliveira Costa, Jéfferson & de Sousa Pereira, Diego José & de Camargo, Antonio Pires, 2022. "Dripper clogging by soil particles entering lateral lines directly during irrigation network assembly in the field," Agricultural Water Management, Elsevier, vol. 273(C).
    12. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    13. van der Kooij, Saskia & Zwarteveen, Margreet & Boesveld, Harm & Kuper, Marcel, 2013. "The efficiency of drip irrigation unpacked," Agricultural Water Management, Elsevier, vol. 123(C), pages 103-110.
    14. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng & Lu, Junsheng, 2022. "Quantifying nutrient stoichiometry and radiation use efficiency of two maize cultivars under various water and fertilizer management practices in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    16. O'Shaughnessy, S.A. & Evett, S.R., 2010. "Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton," Agricultural Water Management, Elsevier, vol. 97(9), pages 1310-1316, September.
    17. Feike, Til & Khor, Ling Yee & Mamitimin, Yusuyunjiang & Ha, Nan & Li, Lin & Abdusalih, Nurbay & Xiao, Haifeng & Doluschitz, Reiner, 2017. "Determinants of cotton farmers’ irrigation water management in arid Northwestern China," Agricultural Water Management, Elsevier, vol. 187(C), pages 1-10.
    18. Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.
    19. Yeşim Aytop, 2023. "Determination of Energy Consumption and Technical Efficiency of Cotton Farms in Türkiye," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    20. Shuang Liu & Geping Luo & Hao Wang, 2020. "Temporal and Spatial Changes in Crop Water Use Efficiency in Central Asia from 1960 to 2016," Sustainability, MDPI, vol. 12(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:126:y:2013:i:c:p:125-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.