IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v116y2013icp175-192.html
   My bibliography  Save this article

Simulated yield and profitability of five potential crops for intensifying the dryland wheat-fallow production system

Author

Listed:
  • Saseendran, S.A.
  • Nielsen, D.C.
  • Ahuja, L.R.
  • Ma, L.
  • Lyon, D.J.

Abstract

Greater precipitation use efficiency (PUE) and economic returns by increasing cropping frequency through the addition of summer crops to the dryland winter wheat-fallow (WF) cropping system have been reported in the semiarid Central Great Plains of USA. However, due to the highly variable nature of precipitation and uncertain water availability, selection of a crop with assured positive net returns to add to the system to increase cropping frequency is a challenge in the absence of reliable seasonal precipitation forecasts. The objective of this study was to evaluate long-term yields and net returns of several potential summer crops at various soil water contents at planting to assess their potential use in increasing dryland cropping frequency. Three grain crops [corn (Zea mays L.), canola (Brassica napus), and proso millet (Panicum miliaceum L.)] and two forage crops [foxtail millet (Setaria italica L. Beauv.) and spring triticale (X Triticosecale rimpaui Wittm.)] for which the Root Zone Water Quality Model (RZWQM2) had been calibrated at Akron, CO and/or Sidney, NE, were selected for investigation through modeling. The calibrated model was used to simulate yield responses of the crops to 25, 50, 75 and 100% of plant available water (PAW) in the soil profile at planting using recorded weather data from Akron, CO and Sidney, NE (1948-2008). Average costs of production and 10-yr average commodity prices for northeast Colorado were used to calculate net returns for each of the crops at the varying PAW levels. All crops showed significant (p<0.05) simulated yield increases in response to increasing initial PAW levels when those changes occurred in the entire 0–180cm soil profile. The two forage crops gave greater net returns than the three grain crops for all initial PAW levels when calculated with 10-yr average prices received. Among the grain crops, proso millet was slightly more profitable than corn at Akron, while corn was the least profitable crop at Sidney. Using current commodity prices (13 September 2011) resulted in proso millet being the least profitable crop at Sidney, while corn was the most profitable grain crop at Akron and showed net returns that were similar to those found for the forage crops. The results of this study may guide the selection of a spring- or summer-planted crop and help farmers assess risk as they contemplate intensifying the WF system by using a measure or estimate of PAW at planting.

Suggested Citation

  • Saseendran, S.A. & Nielsen, D.C. & Ahuja, L.R. & Ma, L. & Lyon, D.J., 2013. "Simulated yield and profitability of five potential crops for intensifying the dryland wheat-fallow production system," Agricultural Water Management, Elsevier, vol. 116(C), pages 175-192.
  • Handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:175-192
    DOI: 10.1016/j.agwat.2012.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741200193X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greb, B. W., 1979. "Reducing Drought Effects on Croplands in the West-Central Great Plains," Agricultural Information Bulletins 309304, United States Department of Agriculture, Economic Research Service.
    2. W. P. Weisensel & G. C. Van Kooten & R. A. Schoney, 1991. "Relative riskiness of fixed vs. flexible crop rotations in the dryland cropping region of Western Canada," Agribusiness, John Wiley & Sons, Ltd., vol. 7(6), pages 551-562.
    3. Nielsen, David C. & Vigil, Merle F. & Benjamin, Joseph G., 2009. "The variable response of dryland corn yield to soil water content at planting," Agricultural Water Management, Elsevier, vol. 96(2), pages 330-336, February.
    4. Ma, L. & Hoogenboom, G. & Ahuja, L.R. & Ascough II, J.C. & Saseendran, S.A., 2006. "Evaluation of the RZWQM-CERES-Maize hybrid model for maize production," Agricultural Systems, Elsevier, vol. 87(3), pages 274-295, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    2. Ma, L. & Ahuja, L.R. & Islam, A. & Trout, T.J. & Saseendran, S.A. & Malone, R.W., 2017. "Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 88-98.
    3. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    4. DeJonge, Kendall C. & Ascough, James C. & Ahmadi, Mehdi & Andales, Allan A. & Arabi, Mazdak, 2012. "Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments," Ecological Modelling, Elsevier, vol. 231(C), pages 113-125.
    5. Stricevic, Ruzica & Cosic, Marija & Djurovic, Nevenka & Pejic, Borivoj & Maksimovic, Livija, 2011. "Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower," Agricultural Water Management, Elsevier, vol. 98(10), pages 1615-1621, August.
    6. Benjamin, J.G. & Nielsen, D.C. & Vigil, M.F. & Mikha, M.M. & Calderon, F., 2015. "Cumulative deficit irrigation effects on corn biomass and grain yield under two tillage systems," Agricultural Water Management, Elsevier, vol. 159(C), pages 107-114.
    7. Cai, Fu & Zhang, Yushu & Mi, Na & Ming, Huiqing & Zhang, Shujie & Zhang, Hui & Zhao, Xianli, 2020. "Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Deng, Jianqiang & Zhang, Zhixin & Liang, Zhiting & Li, Zhou & Yang, Xianlong & Wang, Zikui & Coulter, Jeffrey A. & Shen, Yuying, 2020. "Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system," Agricultural Water Management, Elsevier, vol. 230(C).
    9. Dannele E. Peck & Richard M. Adams, 2010. "Farm-level impacts of prolonged drought: is a multiyear event more than the sum of its parts?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(1), pages 43-60, January.
    10. Unterschultz, James R. & Jeffrey, Scott R. & Quagrainie, Kwamena K., 2000. "Value-Adding 20 Billion By 2005: Impact At The Alberta Farm Gate," Project Report Series 24049, University of Alberta, Department of Resource Economics and Environmental Sociology.
    11. Anapalli, Saseendran S. & Fisher, Daniel K. & Reddy, Krishna N. & Rajan, Nithya & Pinnamaneni, Srinivasa Rao, 2019. "Modeling evapotranspiration for irrigation water management in a humid climate," Agricultural Water Management, Elsevier, vol. 225(C).
    12. Peck, Dannele E. & Adams, Richard M., 2010. "Farm-level impacts of prolonged drought: is a multiyear event more than the sum of its parts?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(1), pages 1-18.
    13. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    14. Saseendran S. Anapalli & Srinivasa R. Pinnamaneni & Daniel K. Fisher & Krishna N. Reddy, 2021. "Vulnerabilities of irrigated and rainfed corn to climate change in a humid climate in the Lower Mississippi Delta," Climatic Change, Springer, vol. 164(1), pages 1-18, January.
    15. Peck, Dannele E. & Adams, Richard M., 2007. "The persistence of drought impacts across growing seasons: a dynamic stochastic analysis," 101st Seminar, July 5-6, 2007, Berlin Germany 9253, European Association of Agricultural Economists.
    16. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    17. Zhichao Shen & Yan Yang & Xiaojing Fu & Kyra H. Adams & Ettore Biondi & Zhongwen Zhan, 2024. "Fiber-optic seismic sensing of vadose zone soil moisture dynamics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Chengyi Huang & Sjoerd Willem Duiker & Liangji Deng & Conggang Fang & Weizhong Zeng, 2015. "Influence of Precipitation on Maize Yield in the Eastern United States," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    19. Souza, João V.R.S. & Saad, João C.C. & Sánchez-Román, Rodrigo M. & Rodríguez-Sinobas, Leonor, 2016. "No-till and direct seeding agriculture in irrigated bean: Effect of incorporating crop residues on soil water availability and retention, and yield," Agricultural Water Management, Elsevier, vol. 170(C), pages 158-166.
    20. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:175-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.