IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v116y2013icp12-20.html
   My bibliography  Save this article

Calibrating soil water potential sensors integrated into a wireless monitoring network

Author

Listed:
  • Nolz, R.
  • Kammerer, G.
  • Cepuder, P.

Abstract

Monitoring of the soil water status is a proper method for optimizing agricultural irrigation. Wireless sensor networks enhance data availability, thus, they can be used as decision support systems. In this study two types of soil water potential sensors were tested. One was the well-established Watermark sensor by Irrometer Co., the other was the relatively new MPS-1 by Decagon Devices, Inc. The goal was to (1) integrate the sensors into a wireless monitoring network, (2) determine and evaluate calibration functions for the integrated sensors, and (3) compare the measuring range and the reaction time of both sensor types in a soil layer during drying. The integration of the sensors into the telemetry network worked well. Data were transmitted over several kilometers and made available via Internet access. Calibration was done for several sensors in a pressure pot. A common calibration function was found for the combination of Watermark sensors with the required interface. Sensor specific calibrations became essential for the MPS-1 due to the very large sensor-to-sensor variation. Four approaches were applied and evaluated: Fitting of a standard power function, fitting of a retention function, using so-called one-point calibrations, and using the factory calibration. The latter was not useful at all. The first two methods performed best. The one-point calibrations turned out to be a sound alternative, because the method is less time consuming. A set of sensors was installed in a thin soil layer in the laboratory in order to compare the water potential measurements during drying. Both sensor types delivered water potential measurements in a range from −10kPa to −600kPa. For values <−130kPa the Watermark sensors reacted significantly more slowly than the MPS-1.

Suggested Citation

  • Nolz, R. & Kammerer, G. & Cepuder, P., 2013. "Calibrating soil water potential sensors integrated into a wireless monitoring network," Agricultural Water Management, Elsevier, vol. 116(C), pages 12-20.
  • Handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:12-20
    DOI: 10.1016/j.agwat.2012.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412002491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 13-28, August.
    2. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 147-158, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morales-Santos, Angela & Nolz, Reinhard, 2023. "Assessment of canopy temperature-based water stress indices for irrigated and rainfed soybeans under subhumid conditions," Agricultural Water Management, Elsevier, vol. 279(C).
    2. López, Juan A. & Navarro, H. & Soto, F. & Pavón, N. & Suardíaz, J. & Torres, R., 2015. "GAIA2: A multifunctional wireless device for enhancing crop management," Agricultural Water Management, Elsevier, vol. 151(C), pages 75-86.
    3. Navarro-Hellín, H. & Torres-Sánchez, R. & Soto-Valles, F. & Albaladejo-Pérez, C. & López-Riquelme, J.A. & Domingo-Miguel, R., 2015. "A wireless sensors architecture for efficient irrigation water management," Agricultural Water Management, Elsevier, vol. 151(C), pages 64-74.
    4. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    5. Janssens, Pieter & Diels, Jan & Vanderborght, Jan & Elsen, Frank & Elsen, Annemie & Deckers, Tom & Vandendriessche, Hilde, 2015. "Numerical calculation of soil water potential in an irrigated ‘conference’ pear orchard," Agricultural Water Management, Elsevier, vol. 148(C), pages 113-122.
    6. Li, Jinwen & Qian, Xiaoyong & Zhang, Min & Fu, Kan & Zhu, Wenjun & Zhao, Qingjie & Shen, Genxiang & Wang, Zhenqi & Chen, Xiaohua, 2021. "Methodology for studying nitrogen loss from paddy fields under alternate wetting and drying irrigation in the lower reaches of the Yangtze River in China," Agricultural Water Management, Elsevier, vol. 254(C).
    7. Delgado, Bueno & Paredes, Madrid & Martínez, Molina, 2015. "Software application for calculating solar radiation and equivalent evaporation in mobile devices," Agricultural Water Management, Elsevier, vol. 151(C), pages 30-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    2. Pascual-Seva, Núria & San Bautista, Alberto & López-Galarza, Salvador & Maroto, José Vicente & Pascual, Bernardo, 2018. "Influence of different drip irrigation strategies on irrigation water use efficiency on chufa (Cyperus esculentus L. var. sativus Boeck.) crop," Agricultural Water Management, Elsevier, vol. 208(C), pages 406-413.
    3. Kassaye, Kassu Tadesse & Boulange, Julien & Lam, Van Thinh & Saito, Hirotaka & Watanabe, Hirozumi, 2020. "Monitoring soil water content for decision supporting in agricultural water management based on critical threshold values adopted for Andosol in the temperate monsoon climate," Agricultural Water Management, Elsevier, vol. 229(C).
    4. Incrocci, Luca & Thompson, Rodney B. & Fernandez-Fernandez, María Dolores & De Pascale, Stefania & Pardossi, Alberto & Stanghellini, Cecilia & Rouphael, Youssef & Gallardo, Marisa, 2020. "Irrigation management of European greenhouse vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    5. Beyá-Marshall, Víctor & Arcos, Emilia & Seguel, Óscar & Galleguillos, Mauricio & Kremer, Cristián, 2022. "Optimal irrigation management for avocado (cv. 'Hass') trees by monitoring soil water content and plant water status," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    7. Abdelfatah, Ashraf & Aranda, Xavier & Savé, Robert & de Herralde, Felicidad & Biel, Carmen, 2013. "Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse," Agricultural Water Management, Elsevier, vol. 118(C), pages 150-158.
    8. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    9. Abrisqueta, I. & Vera, J. & Tapia, L.M. & Abrisqueta, J.M. & Ruiz-Sánchez, M.C., 2012. "Soil water content criteria for peach trees water stress detection during the postharvest period," Agricultural Water Management, Elsevier, vol. 104(C), pages 62-67.
    10. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    11. Hong, Minki & Lee, Sang-Hyun & Lee, Seung-Jae & Choi, Jin-Yong, 2021. "Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit," Agricultural Water Management, Elsevier, vol. 243(C).
    12. N. Maier & J. Dietrich, 2016. "Using SWAT for Strategic Planning of Basin Scale Irrigation Control Policies: a Case Study from a Humid Region in Northern Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3285-3298, July.
    13. Migliaccio, Kati W. & Schaffer, Bruce & Crane, Jonathan H. & Davies, Frederick S., 2010. "Plant response to evapotranspiration and soil water sensor irrigation scheduling methods for papaya production in south Florida," Agricultural Water Management, Elsevier, vol. 97(10), pages 1452-1460, October.
    14. Müller, T. & Ranquet Bouleau, C. & Perona, P., 2016. "Optimizing drip irrigation for eggplant crops in semi-arid zones using evolving thresholds," Agricultural Water Management, Elsevier, vol. 177(C), pages 54-65.
    15. Vera-Repullo, J.A. & Ruiz-Peñalver, L. & Jiménez-Buendía, M. & Rosillo, J.J. & Molina-Martínez, J.M., 2015. "Software for the automatic control of irrigation using weighing-drainage lysimeters," Agricultural Water Management, Elsevier, vol. 151(C), pages 4-12.
    16. Bonachela, Santiago & Fernández, María Dolores & Cabrera, Francisco Javier & Granados, María Rosa, 2018. "Soil spatio-temporal distribution of water, salts and nutrients in greenhouse, drip-irrigated tomato crops using lysimetry and dielectric methods," Agricultural Water Management, Elsevier, vol. 203(C), pages 151-161.
    17. Contreras, J.I. & Alonso, F. & Cánovas, G. & Baeza, R., 2017. "Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects," Agricultural Water Management, Elsevier, vol. 183(C), pages 26-34.
    18. Lo, Tsz Him & Rudnick, Daran R. & Singh, Jasreman & Nakabuye, Hope Njuki & Katimbo, Abia & Heeren, Derek M. & Ge, Yufeng, 2020. "Field assessment of interreplicate variability from eight electromagnetic soil moisture sensors," Agricultural Water Management, Elsevier, vol. 231(C).
    19. Dean C. J. Rice & Rupp Carriveau & David S. -K. Ting & Mo’tamad H. Bata, 2017. "Evaluation of Crop to Crop Water Demand Forecasting: Tomatoes and Bell Peppers Grown in a Commercial Greenhouse," Agriculture, MDPI, vol. 7(12), pages 1-14, December.
    20. Liang, Xi & Liakos, Vasilis & Wendroth, Ole & Vellidis, George, 2016. "Scheduling irrigation using an approach based on the van Genuchten model," Agricultural Water Management, Elsevier, vol. 176(C), pages 170-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:116:y:2013:i:c:p:12-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.